Hardprob/Minimum Routing Tree Congestion — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена <m>w : E \rightarrow N</m> на <em>w: E → N</em>)
(Массовая правка: замена <m>G=\left(V,E\right)</m> на <em>G=(V,E)</em>)
Строка 1: Строка 1:
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
* Граф <m>G=\left(V,E\right)</m>, веса <em>w: E → N</em> на ребрах.
+
* Граф <em>G=(V,E)</em>, веса <em>w: E → N</em> на ребрах.
 
* Найти маршрутное дерево <em>T</em> для <em>G</em>, т.е. дерево <em>T</em>, для которого все внутренние вершины имеют степень 3, а листья соответствуют вершинам <em>G</em>.
 
* Найти маршрутное дерево <em>T</em> для <em>G</em>, т.е. дерево <em>T</em>, для которого все внутренние вершины имеют степень 3, а листья соответствуют вершинам <em>G</em>.
 
* Минимизировать перегруженность дерева маршрутизации, т.е. минимум по максимуму для каждого ребра <em>e</em> по <m>\begin{displaymath}\sum_{(u,v) \in E, u \in S, v \not\in S}w(u,v)\end{displaymath}</m>, и где  
 
* Минимизировать перегруженность дерева маршрутизации, т.е. минимум по максимуму для каждого ребра <em>e</em> по <m>\begin{displaymath}\sum_{(u,v) \in E, u \in S, v \not\in S}w(u,v)\end{displaymath}</m>, и где  

Версия 05:46, 17 апреля 2023

  • Граф G=(V,E), веса w: E → N на ребрах.
  • Найти маршрутное дерево T для G, т.е. дерево T, для которого все внутренние вершины имеют степень 3, а листья соответствуют вершинам G.
  • Минимизировать перегруженность дерева маршрутизации, т.е. минимум по максимуму для каждого ребра e по , и где

S — это один из двух связных компонентов, полученных удалением e из T.


Задача в лаб17 (рид-онли просмотр)