Hardprob/Maximum K-Cut — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена {{hard-problem-on-lab17|{{PAGENAME}}}} на {{hard-problem-on-lab17|{{PAGENAME}}}} <!-- * {{has-testdata-and-visualization}} --> <!-- * {{has-pyomo-model}} --> <!-- * {{has-npc-reduction}} --> <!-- * {{add-random-fuzzing-tests}} -->)
(Массовая правка: замена <m>G=\left(V,E\right)</m> на <em>G=(V,E)</em>)
Строка 1: Строка 1:
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
* Граф <m>G=\left(V,E\right)</m>, веса на ребрах <m>w:E\rightarrow N</m>, целое <m>k\in[2..\vert V\vert]</m>.
+
* Граф <em>G=(V,E)</em>, веса на ребрах <m>w:E\rightarrow N</m>, целое <m>k\in[2..\vert V\vert]</m>.
 
* Найти разбиение <em>V</em> на <em>k</em> непересекающихся множеств <m>F=\{C_1,C_2,\ldots,C_k\}</m>.
 
* Найти разбиение <em>V</em> на <em>k</em> непересекающихся множеств <m>F=\{C_1,C_2,\ldots,C_k\}</m>.
 
* Максимизировать сумму весов между ребрами, которые между этими множествами<m>\begin{displaymath}\displaystyle\sum_{i=1}^{k-1}\displaystyle\sum_{j=i+1}^k
 
* Максимизировать сумму весов между ребрами, которые между этими множествами<m>\begin{displaymath}\displaystyle\sum_{i=1}^{k-1}\displaystyle\sum_{j=i+1}^k

Версия 05:46, 17 апреля 2023

  • Граф G=(V,E), веса на ребрах , целое .
  • Найти разбиение V на k непересекающихся множеств .
  • Максимизировать сумму весов между ребрами, которые между этими множествами

Задача в лаб22 (рид-онли просмотр)