Hardprob/Minimum Schedule Length — различия между версиями
Материал из DISCOPAL
StasFomin (обсуждение | вклад) (Массовая правка: замена PCRE <m>(\w)\s*:\s*(\w)\s*→\s*(\w)</m> на <em>\1: \2 → \3</em>) |
StasFomin (обсуждение | вклад) (Массовая правка: замена \ldots на …) |
||
Строка 6: | Строка 6: | ||
** <em>T</em> — набор токенов <m>t=\left(u,v,p\right)</m>, где <m>u,v ∈ V</m>, и <em>p</em> — это либо путь из <em>u</em> в <em>v</em> или пустое множество. | ** <em>T</em> — набор токенов <m>t=\left(u,v,p\right)</m>, где <m>u,v ∈ V</m>, и <em>p</em> — это либо путь из <em>u</em> в <em>v</em> или пустое множество. | ||
− | * Найти расписание <em>S</em>, т.е. последовательность <m>f_0, | + | * Найти расписание <em>S</em>, т.е. последовательность <m>f_0, …, f_l</m> конфигурационных функций <m>f_i:T → V</m>, таких что |
** для любого токена <m>t=\left(u,v,p\right)</m>, <m>f_0(t)=u</m> и <m>f_l(t)=v</m>. | ** для любого токена <m>t=\left(u,v,p\right)</m>, <m>f_0(t)=u</m> и <m>f_l(t)=v</m>. | ||
** для любого <m>0 ≤ i ≤ l-1</m> и для любого токена <em>t</em>, | ** для любого <m>0 ≤ i ≤ l-1</m> и для любого токена <em>t</em>, |
Версия 22:45, 17 апреля 2023
- Сеть , где
- граф G=(V,E)
- емкость на вершинах b: V → N
- емкость на ребрах c: E → N
- T — набор токенов , где , и p — это либо путь из u в v или пустое множество.
- Найти расписание S, т.е. последовательность конфигурационных функций , таких что
- для любого токена , и .
- для любого и для любого токена t,
- если и , то
- (u,v)∈ E
- если и , то
- Минимизировать длину расписания, l.
Задача в лаб22 (рид-онли просмотр)