Участник:StasFomin/Bookmarks/Algorithms — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Добавлена закладка Unipisa/HLT: Notebooks for course HLT)
(Добавлена закладка Add support for live share · Issue #388 · coder/code-server · GitHub)
 
(не показаны 44 промежуточные версии этого же участника)
Строка 1: Строка 1:
 
== 2024 ==
 
== 2024 ==
 +
=== 2024-05 ===
 +
 +
* 2024-05-31, 00:40:21: [https://github.com/coder/code-server/issues/388 Add support for live share · Issue #388 · coder/code-server · GitHub]
 +
*: <html>Just want to say that I am currently able to download and install the .vsix, and Live Share (1.0.5857) works for me on code-server (4.11.0).</html>
 +
<!-- NEXT BOOKMARK -->
 +
* 2024-05-21, 21:45:24: [https://habr.com/ru/companies/alfa/articles/748824/ Единая нейросетевая модель кредитного скоринга / Хабр]
 +
 +
=== 2024-04 ===
 +
 +
* 2024-04-18, 03:27:43: [https://arxiv.org/abs/2104.00480 (2104.00480) Idris 2: Quantitative Type Theory in Practice]
 +
 +
=== 2024-03 ===
 +
 +
* 2024-03-28, 16:34:00: [https://docs.google.com/spreadsheets/d/1ioHOHnPrcj6qBrsxotYVeVJVlkqHj2GD/edit?pli=1#gid=1316239506 статус курсы.xlsx - Google Sheets]
 +
*: <html><br><br></html>
 +
<!-- NEXT BOOKMARK -->
 +
* 2024-03-20, 19:14:22: [https://github.com/sheryl-ai/MVGCN sheryl-ai/MVGCN: Multi-View Graph Convolutional Network and Its Applications on Neuroimage Analysis for Parkinson's Disease (AMIA 2018)]
 +
* 2024-03-03, 19:22:07: [https://sysblok.ru/knowhow/kak-ustroena-nejroset-bert-ot-google/ Как устроена нейросеть BERT от Google - Системный Блокъ]
 +
* 2024-03-03, 19:13:07: [https://github.com/LeorFinkelberg/Optimization LeorFinkelberg/Optimization]
 +
 +
=== 2024-02 ===
 +
 +
* 2024-02-27, 20:55:59: [https://vk.com/video-176869000_456239030 Video005 — Видео]
 +
 
=== 2024-01 ===
 
=== 2024-01 ===
  
 +
* 2024-01-27, 07:22:19: [https://github.com/MykolaHerasymovych/Optimizing-Acceptance-Threshold-in-Credit-Scoring-using-Reinforcement-Learning/blob/master/Source/simulation.py Optimizing-Acceptance-Threshold-in-Credit-Scoring-using-Reinforcement-Learning/Source/simulation.py at master · MykolaHerasymovych/Optimizing-Acceptance-Threshold-in-Credit-Scoring-using-Reinforcement-Learning]
 +
* 2024-01-27, 07:05:06: [https://habr.com/ru/companies/glowbyte/articles/519382/ ML и DS оттенки кредитного риск-менеджмента / Хабр]
 +
* 2024-01-27, 02:47:46: [https://bijournal.hse.ru/data/2015/10/12/1076342406/2.pdf BI 3 (33) 2015 new.indd - 2.pdf]
 +
* 2024-01-26, 03:06:01: [https://habr.com/ru/companies/yandex/articles/263991/ Вероятностное программирование / Хабр]
 +
* 2024-01-21, 03:00:34: [https://github.com/fast-algos/graphs-matrices-optimization/blob/master/lecture1.pdf graphs-matrices-optimization/lecture1.pdf at master · fast-algos/graphs-matrices-optimization]
 +
* 2024-01-21, 02:53:24: [https://github.com/ChrisTX/lecture-notes/tree/7726d59c6caeaa7ac874cbc1fb1e08353bfd98f3/Approximation%20Algorithms lecture-notes/Approximation Algorithms at 7726d59c6caeaa7ac874cbc1fb1e08353bfd98f3 · ChrisTX/lecture-notes]
 +
* 2024-01-20, 00:29:21: [https://github.com/tlkahn/zkSNARKs-Cryptography-Protocol-Survey tlkahn/zkSNARKs-Cryptography-Protocol-Survey]
 +
* 2024-01-20, 00:23:51: [https://github.com/prokls/theoretical-computer-science-2/blob/master/randomized_complexity_classes.pdf theoretical-computer-science-2/randomized_complexity_classes.pdf at master · prokls/theoretical-computer-science-2]
 +
* 2024-01-19, 23:12:56: [https://zhuanlan.zhihu.com/p/37270132 Теорема PCP, часть 1: Введение - Чжиху]
 +
* 2024-01-19, 23:07:56: [https://github.com/mourad1081/complexity-exam-questions mourad1081/complexity-exam-questions: Réponse aux questions de complexité]
 +
* 2024-01-19, 23:06:42: [https://github.com/LucaCappelletti94/lectures-notes/tree/0b0550ee36eab19d0d48f74e407beee1e5a3e78f/Unimi/Algoritmi%20e%20Complessita lectures-notes/Unimi/Algoritmi e Complessita at 0b0550ee36eab19d0d48f74e407beee1e5a3e78f · LucaCappelletti94/lectures-notes]
 +
* 2024-01-19, 22:51:02: [https://github.com/BrownAppliedCryptography/notes BrownAppliedCryptography/notes: Scribed course notes.]
 +
* 2024-01-19, 22:49:27: [https://github.com/mnielsen/expander_graph_notes mnielsen/expander_graph_notes: Notes on expander graphs]
 +
* 2024-01-19, 22:48:32: [https://github.com/pragmaticTNT pragmaticTNT]
 +
* 2024-01-19, 22:43:13: [https://github.com/mnielsen/expander_graph_notes/blob/193880dde69c1aa2bdf974a4975a0b960a278575/expanders_github.tex expander_graph_notes/expanders_github.tex at 193880dde69c1aa2bdf974a4975a0b960a278575 · mnielsen/expander_graph_notes]
 +
* 2024-01-19, 02:36:35: [https://github.com/sleepymalc/Notes/blob/7e28b1c548da109b7e89a62acc6ed1076841352c/EECS598-001-Approximation-Algorithms-and-Hardness-of-Approximation/Lectures/lec_2.tex Notes/EECS598-001-Approximation-Algorithms-and-Hardness-of-Approximation/Lectures/lec_2.tex at 7e28b1c548da109b7e89a62acc6ed1076841352c · sleepymalc/Notes]
 +
* 2024-01-19, 02:16:16: [https://github.com/sleepymalc/Notes/tree/7e28b1c548da109b7e89a62acc6ed1076841352c/EECS598-001-Approximation-Algorithms-and-Hardness-of-Approximation Notes/EECS598-001-Approximation-Algorithms-and-Hardness-of-Approximation at 7e28b1c548da109b7e89a62acc6ed1076841352c · sleepymalc/Notes]
 +
* 2024-01-19, 01:41:18: [https://github.com/arielgabizon/Lectures/blob/master/4elemproofAarhus2019.pdf Lectures/4elemproofAarhus2019.pdf at master · arielgabizon/Lectures]
 +
* 2024-01-19, 01:10:29: [https://github.com/Landarzar/complexityPoster/blob/master/poster.pdf complexityPoster/poster.pdf at master · Landarzar/complexityPoster]
 +
* 2024-01-19, 00:54:25: [https://github.com/jarrodmillman/pcp/blob/master/final.tex pcp/final.tex at master · jarrodmillman/pcp]
 +
* 2024-01-18, 22:17:49: [https://github.com/SanskarX10/Coding-Graph-Theory-101/tree/main SanskarX10/Coding-Graph-Theory-101: Coding and explanation of Graph theory algorithms used in computer science in python-3 . These set of notebooks acts as a course in graph theory.]
 +
* 2024-01-18, 22:16:14: [https://github.com/rjwrobel86/Python4Statistics/tree/main rjwrobel86/Python4Statistics: Python Scripts and Jupyter Notebooks for Prof. Robert Wrobel's Applied Business Statistics course at Webster University and anybody else who wants to learn!]
 +
* 2024-01-18, 22:04:34: [https://github.com/hishamcse/Discrete-Math-Specialization-Coursera-/tree/master hishamcse/Discrete-Math-Specialization-Coursera-: This repository contains the materials, python codes for the quiz and some codes implemented using jupyter notebook related to the specialization ( Introduction to Discrete Mathematics In Computer Science)]
 +
* 2024-01-18, 21:52:09: [https://github.com/i40a/python-for-industry40 i40a/python-for-industry40: Jupyter Notebook files from the course Python for Industry 4.0.]
 +
* 2024-01-18, 21:50:24: [https://github.com/kylebeggs/Numerical-Methods-in-Python kylebeggs/Numerical-Methods-in-Python: A collection of Python notebooks covering topics in an undergraduate Numerical Methods in Engineering course.]
 +
* 2024-01-18, 21:49:05: [https://github.com/sslotin/universum-dl sslotin/universum-dl: Some notebooks from a Deep Learning mini-course taught in Summer '18]
 +
* 2024-01-18, 21:43:06: [https://github.com/ali-tny/boyd-convex-optimisation-py ali-tny/boyd-convex-optimisation-py: homework notebooks for the Stanford Convex Optimisation course in python (rather than Matlab)]
 +
* 2024-01-18, 21:40:45: [https://github.com/Novota15/fourier-transforms-in-python Novota15/fourier-transforms-in-python: A jupyter python notebook that provides a crash course on Fourier Series, Fourier Transforms, Fast Fourier Transforms, and improving Chebyshev Interpolation with FFT]
 +
* 2024-01-18, 21:37:53: [https://github.com/nivkeren/computational-methods nivkeren/computational-methods: computational-methods course notebooks]
 +
* 2024-01-18, 21:36:24: [https://github.com/ptah23/audio-transformers-course-notebooks ptah23/audio-transformers-course-notebooks: Python notebooks for hugging face audio transformers course]
 +
* 2024-01-18, 21:31:16: [https://github.com/iutzeler/refresher-course iutzeler/refresher-course: Jupyter Notebooks for practical sessions of the "Refresher Course in Matrix Analysis and Numerical Optimization" at Université Grenoble Alpes]
 +
* 2024-01-18, 21:30:20: [https://github.com/codeninja55/mathematic_notebooks/tree/master codeninja55/mathematic_notebooks: A repository store for all mathematic references, jupyter notebooks, and notes from various courses taken.]
 +
* 2024-01-18, 21:26:26: [https://github.com/juanklopper/Linear-algebra-for-data-science-with-python/tree/master juanklopper/Linear-algebra-for-data-science-with-python: Jupyter notebooks for my course on linear algebra using symbolic python.]
 +
* 2024-01-18, 21:19:14: [https://github.com/Milwa97/A-level-math Milwa97/A-level-math: A level math course in form of jupyter notebooks. The aim of the course is to develop mathematical intuition and a better understanding of mathematics at the post-elementary level]
 +
* 2024-01-18, 21:18:21: [https://github.com/aezarebski/aas-extended-examples aezarebski/aas-extended-examples: A collection of notebooks used in the tutorials for the applied analytic statistics course in 2020]
 +
* 2024-01-18, 21:17:45: [https://github.com/raghurama123/NumericalMethods raghurama123/NumericalMethods: Contains Jupyter notebooks and other materials prepared for the course Numerical Methods offered at TIFR Hyderabad (https://moldis-group.github.io/teaching.html)]
 +
* 2024-01-18, 21:16:47: [https://github.com/ymlai87416/ComputationalFinance_notebook ymlai87416/ComputationalFinance_notebook: Notebook and assignment for Coursera course: Introduction to Computational Finance and Financial Econometrics by Eric Zivot]
 
* 2024-01-18, 21:13:14: [https://github.com/Unipisa/HLT Unipisa/HLT: Notebooks for course HLT]
 
* 2024-01-18, 21:13:14: [https://github.com/Unipisa/HLT Unipisa/HLT: Notebooks for course HLT]
 
* 2024-01-18, 21:13:01: [https://github.com/Pengyue-Lab/uiuc-cs357-fa21-scripts Pengyue-Lab/uiuc-cs357-fa21-scripts: A repository of useful scripts for the course CS357 in the form of Jupyter Notebook.]
 
* 2024-01-18, 21:13:01: [https://github.com/Pengyue-Lab/uiuc-cs357-fa21-scripts Pengyue-Lab/uiuc-cs357-fa21-scripts: A repository of useful scripts for the course CS357 in the form of Jupyter Notebook.]

Текущая версия на 00:40, 31 мая 2024

2024

2024-05

2024-04

2024-03

2024-02

2024-01

2023

2023-11

2023-10

2023-09

2023-08

2023-06

2023-03

2022

2022-04

  • 2022-04-27, 22:04:58: Nick Titterton
    X = cvx.Variable((V, V), PSD=True)

2022-03

2021

2021-12

2021-11

2021-10

2021-09

2021-08

2021-07

2021-06

2021-05

  • 2021-05-30, 11:24:30: Facebook
    Аллен Дауни прямо радует - читается хорошо, без академической воды и понятно, с адекватными и ясными примерами практических задач. Последний раз все было так ясно и лаконично при перерешивании задач по терверу из советского учебника Вентцель и книги по байесовским методам Джона Крушке. Покрутил, наверное, в 10 раз в голове теорему Байеса и, вообще, понятие вероятности, условной вероятности, совместной вероятности, априорного и апостериорного распределения, сопряженного приора, pdf, pmf, cdf с разных сторон (и в очередной раз так и не просек простую идею бета-распределения, но, верю, она же есть) - ну чтобы чуйка развилась еще больше. Я честно, от всего сердца и ума, делал несколько подходов к прикладной байесовской статистике с разных сторон и с разными инструментами, прочитал, наверно несколько книг (поняв в них далеко не все) и не помню уже как много статей, но постоянно преследовал вопрос - а зачем и как это мне поможет в повседневной практике? Основная цель, которую я преследовал и до сих пор преследую для себя - научиться понимать "небольшие" данные и причины, стоящие за ними глубже, чем позволяют популярные статистические методы и мало кем, на самом деле, глубоко понимаемые доверительные интервалы на хи-квадратах, погоняемых группами сТЬЮдентов

2021-04

2021-03

2021-02

2021-01

2020

2020-12

2020-11

2020-10

2020-09

2020-08

2020-07