2001-gre-vs-practice.pdf/Q39 — различия между версиями
Илья52 (обсуждение | вклад) |
Илья52 (обсуждение | вклад) |
||
Строка 20: | Строка 20: | ||
Оценим сколько времени нужно на умножение (<m>N_1</m><m>N_2</m>) <m>N_3</m>. | Оценим сколько времени нужно на умножение (<m>N_1</m><m>N_2</m>) <m>N_3</m>. | ||
− | Умножение (<m>N_1</m><m>N_2</m>) пропорцианально <m>wxy</m>, получается матрица размера <m>w</m> на <m>y</m>. Далее | + | Умножение (<m>N_1</m><m>N_2</m>) пропорцианально <m>wxy</m>, получается матрица размера <m>w</m> на <m>y</m>. Далее результат умножается на <m>N_3</m>. Время умножения пропорцианально <m>wyz</m>. |
Таким образом, первое умножение пропорцианально <m>wxy + wyz</m>. | Таким образом, первое умножение пропорцианально <m>wxy + wyz</m>. |
Версия 18:19, 21 декабря 2024
Вопрос: Q39-e5724f
Задача зарезервирована: илья52 11:04, 21 декабря 2024 (UTC)
Для вычисления матричного произведения и , где содержит строк и столбцов, а - строк и столбцов, требуется время, пропорциональное , и в результате получается матрица из строк и столбцов. Рассмотрим произведение трех матриц , , , которые содержат, соответственно, строк и столбцов, строк и столбцов, а также строк и столбцов. При каком условии потребуется меньше времени, чтобы вычислить произведение как () , (т.е. сначала умножить первые две матрицы), или быстрее вычислить его как ()?
Ответы
- Нет такого условия, время всегда будет одним и тем же.
Объяснение
Исходники — вопрос 39 на 33 странице книги «2001-gre-vs-practice.pdf» Оценим сколько времени нужно на умножение () .
Умножение () пропорцианально , получается матрица размера на . Далее результат умножается на . Время умножения пропорцианально .
Таким образом, первое умножение пропорцианально .
Аналогичными рассуждениями получаем, что умножение вторым способом пропорцианально .
По условию, первый способ должен занимать меньше времени, составим неравенство:
Разделим обе части на .
Получим неравенство .
Правильный ответ: 2.