2001-gre-math.pdf/Q58 — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Новая страница: « == Вопрос: Q58-19def7 == <blockquote> Тут вставьте перевод вопроса. Используйте [https://wiki.4intra.net/Help:%D0%A4%D…»)
 
 
(не показана 1 промежуточная версия 1 участника)
Строка 1: Строка 1:
 
 
== Вопрос: Q58-19def7 ==
 
== Вопрос: Q58-19def7 ==
  
<blockquote>
+
Пусть f — действительнозначная функция, определенная и непрерывная на множестве вещественных чисел. Какие из следующих утверждений о множестве S = {f(c) : 0 < c < 1} являются верными?
Тут вставьте перевод вопроса.
+
Используйте [https://wiki.4intra.net/Help:%D0%A4%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5 возможности разметки],  
+
включая формулы и т.п, если будут графы — посмотрите как задать их текстом https://wiki.4intra.net/Graphviz (реально оценю, полезный навык).
+
  
В IT вообще не принято писать романы, всегда старайтесь писать структурированные (списками-абзацами тексты). Списки в MediaWiki — это просто «*». Не забывайте о них.
+
;I: S — связное подмножество действительных чисел
* Преформатированный моноширинный текст — просто отступ.
+
;II: S — открытое подмножество действительных чисел
* Короткая математика — тег <nowiki><m>\sum_i^100 i^2</m></nowiki>
+
;III: S — ограниченное подмножество вещественных чисел
* Большой LaTeX-блок (пример [[2008-gre-math-0568.pdf/Q09]])
+
<nowiki><latex>
+
… Lores ipsum $\sum_i^100 i^2$ …
+
</latex></nowiki>
+
 
+
Старайтесь нетривиальные понятия, особенно незнакомые вам, найти ссылку на википедию и вставить (нейросети лажают!).
+
Это важно, чтобы найти корректный перевод (то, что в википедии, или на худой конец — точно массово гуглится).
+
 
+
Потом конечно сотрите эти инструкции, которые тут курсивом или в блоке цитирования (и тег «blockquote»).
+
</blockquote>
+
  
 
=== Ответы ===
 
=== Ответы ===
<i>Если ответы простые, однострочные, используйте простой способ задания ответов списком, типа так
+
* Только I
(префикс «Правильный ответ:» — это дословно, для правильного ответа, неважно, какой он будет в списке)</i>
+
* Только I и II
 
+
* Правильный ответ: Только I и III
* Правильный ответ: тут реально правильный ответ
+
* Только II и III
* неправильный ответ
+
* I, II и III
* еще какой-то неправильный ответ
+
* еще какой-то неправильный ответ
+
* еще какой-то неправильный ответ
+
 
+
<i>Если ответы длинные, многострочные, или там графы, используйте
+
[https://wiki.4intra.net/MediawikiQuizzer/ru#.D0.9E.D1.82.D0.B2.D0.B5.D1.82.D1.8B способ задания ответов разделами],
+
Но такое очень редко встречается, например [[2011-gre-cs-practice-book.pdf/Q05]]. </i>
+
 
+
  
 
=== Объяснение ===
 
=== Объяснение ===
<i>Сначала заполните номер страницы с этим вопросом
+
{{cstest-source|2001-gre-math.pdf|48|58}}
{{cstest-source|2001-gre-math.pdf|тут-номер-страницы-с-вопросом-58|58}}
+
 
+
Если все сделаете правильно, по ссылке выше будет открываться правильная страница в правильном PDFе.
+
 
+
Ну и наконец, вики-разметкой напишите ваше понимание, почему правильный ответ — правильный, а неправильные варианты — неправильны.
+
Конкретно здесь, в математических тестах ожидается в большинстве случаев просто блок питон-кода с использованием sympy,
+
см. [[Blog:Advanced_Algorithms/Потренируйтесь_в_sympy_на_детских_тестах_по_математике]], просто добавьте ваш код в этот тег:
+
 
+
<code-python>
+
from sympy import *
+
....
+
</code-python>
+
  
Но если уж sympy неприменим, распишите плиз, как понимаете 🤷‍♂️.  
+
;I: верно, следует из теоремы о промежуточном значении для непрерывной на отрезке функции.
</i>
+
;II: неверно, например для f(x) = sin(x) множество S = [-1, 1] и является замкнутым.
 +
;III: верно, функция непрерывна на отрезке [0, 1], а значит достигает на нем своей верхней и нижней грани, а если функция ограничена на множестве, то будет ограничена и на его подмножестве.
  
{{question-ok|}}
+
{{question-ok|[[Участник:StasFomin|StasFomin]] 13:54, 13 января 2025 (UTC)}}
  
[[Category:Математика]]
+
[[Категория:Математика]]

Текущая версия на 13:54, 13 января 2025

Вопрос: Q58-19def7

Пусть f — действительнозначная функция, определенная и непрерывная на множестве вещественных чисел. Какие из следующих утверждений о множестве S = {f(c) : 0 < c < 1} являются верными?

I
S — связное подмножество действительных чисел
II
S — открытое подмножество действительных чисел
III
S — ограниченное подмножество вещественных чисел

Ответы

  • Только I
  • Только I и II
  • Правильный ответ: Только I и III
  • Только II и III
  • I, II и III

Объяснение

Исходники — вопрос 58 на 48 странице книги «2001-gre-math.pdf»

I
верно, следует из теоремы о промежуточном значении для непрерывной на отрезке функции.
II
неверно, например для f(x) = sin(x) множество S = [-1, 1] и является замкнутым.
III
верно, функция непрерывна на отрезке [0, 1], а значит достигает на нем своей верхней и нижней грани, а если функция ограничена на множестве, то будет ограничена и на его подмножестве.