MAX-CUT: вероятностное округление/Задачи/merge-vertices — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена :Решенные задачи]] на :Нерешенные задачи]])
(Массовая правка: добавление Категория:Теоретические задачи)
 
(не показана одна промежуточная версия этого же участника)
Строка 68: Строка 68:
 
Доказать, что вероятностный алгоритм вычисляет минимальный разрез с вероятностью <m>P \ge \frac{2}{n(n-1)}</m>
 
Доказать, что вероятностный алгоритм вычисляет минимальный разрез с вероятностью <m>P \ge \frac{2}{n(n-1)}</m>
  
[[Категория:Нерешенные задачи]]
+
[[Категория:Решенные задачи]]
 +
[[Категория:Теоретические задачи]]

Текущая версия на 06:50, 4 мая 2023

Минимальный разрез в графе (стягивание вершин)

Рассмотрим рандомизированный алгоритм Каргера-Штейна для неориентированных графов с кратными ребрами. Пусть дан мультиграф c вершинами и ребрами.

Алгоритм основан на операции стягивания ребра между двумя вершинами. После стягивания ребра получим новый граф без вершины в котором каждое ребро вида заменено ребром (петли также удаляются). Алгоритм следующий

for i=0 to n-2:
   выбрать случайное ребро e
   стянуть ребро e

[svg] [svg] [svg] [svg]

В конце, «восстанавливаем разрез» — каждая его часть соответствует вершинам, содержащимся в одной из метавершин.

[svg]



Доказать, что вероятностный алгоритм вычисляет минимальный разрез с вероятностью