Citeseer/Packing a Knapsack of Unknown Capacity (2014) 10.1.1.744.7611 — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Новая страница: «{{checked|}} {{citeseerlink|citeseer/Packing a Knapsack of Unknown Capacity (2014) 10.1.1.744.7611|<html> </html>}} {{enddiv}} Категория:CiteSeerArt…»)
 
 
(не показаны 2 промежуточные версии 2 участников)
Строка 1: Строка 1:
 
{{checked|}}
 
{{checked|}}
{{citeseerlink|citeseer/Packing a Knapsack of Unknown Capacity (2014) 10.1.1.744.7611|<html>
+
{{citeseerlink|citeseer/Packing a Knapsack of Unknown Capacity (2014) 10.1.1.744.7611|
 +
Мы изучаем проблему упаковки ранца, не зная его вместимости.
  
 +
Всякий раз, когда мы пытаемся упаковать предмет, который не помещается, этот предмет отбрасывается; если предмет помещается, мы должны
 +
включить его в упаковку.
  
</html>}}
+
Мы показываем, что всегда существует политика, которая упаковывает ценность в пределах коэффициента 2 от оптимальной упаковки, независимо от фактической вместимости.
 +
 
 +
Если все предметы имеют единичную плотность, мы достигаем коэффициента, равного золотому сечению φ≈1,618.
 +
 
 +
Показано, что оба коэффициента являются оптимальными.
 +
 
 +
Фактически, мы получаем вышеуказанные коэффициенты с помощью упаковочных политик, которые являются универсальными в том смысле, что они фиксируют определенный порядок предметов и пытаются упаковать предметы в этом порядке, независимо от наблюдений, сделанных во время упаковки.
 +
 
 +
Мы приводим эффективные алгоритмы, вычисляющие эти политики.
 +
 
 +
С другой стороны, мы показываем, что для любого α > 1 проблема решения вопроса о том, достигает ли данная универсальная политика коэффициента α, является coNP-полной. Если α является частью входных данных, то та же проблема, как показано, является coNP-полной для элементов с единичной плотностью.
 +
 
 +
Наконец, мы показываем, что для заданного α решить, допускает ли набор предметов универсальную политику с коэффициентом α, даже если все предметы имеют единичную плотность, является coNP-трудной задачей, даже если все элементы имеют единичные плотности.
 +
}}
 
{{enddiv}}
 
{{enddiv}}
  
 
[[Категория:CiteSeerArticles]]
 
[[Категория:CiteSeerArticles]]

Текущая версия на 06:38, 17 марта 2022

«

Мы изучаем проблему упаковки ранца, не зная его вместимости.

Всякий раз, когда мы пытаемся упаковать предмет, который не помещается, этот предмет отбрасывается; если предмет помещается, мы должны включить его в упаковку.

Мы показываем, что всегда существует политика, которая упаковывает ценность в пределах коэффициента 2 от оптимальной упаковки, независимо от фактической вместимости.

Если все предметы имеют единичную плотность, мы достигаем коэффициента, равного золотому сечению φ≈1,618.

Показано, что оба коэффициента являются оптимальными.

Фактически, мы получаем вышеуказанные коэффициенты с помощью упаковочных политик, которые являются универсальными в том смысле, что они фиксируют определенный порядок предметов и пытаются упаковать предметы в этом порядке, независимо от наблюдений, сделанных во время упаковки.

Мы приводим эффективные алгоритмы, вычисляющие эти политики.

С другой стороны, мы показываем, что для любого α > 1 проблема решения вопроса о том, достигает ли данная универсальная политика коэффициента α, является coNP-полной. Если α является частью входных данных, то та же проблема, как показано, является coNP-полной для элементов с единичной плотностью.

Наконец, мы показываем, что для заданного α решить, допускает ли набор предметов универсальную политику с коэффициентом α, даже если все предметы имеют единичную плотность, является coNP-трудной задачей, даже если все элементы имеют единичные плотности.

…»