Hardprob/Minimum Generalized Steiner Network — различия между версиями
Материал из DISCOPAL
StasFomin (обсуждение | вклад) (Массовая правка: замена <!-- start --> на <!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->) |
StasFomin (обсуждение | вклад) (Массовая правка: замена PCRE <m>(\w)\s*:\s*(\w)\s*×\s*(\w)\s*→\s*(\w)</m> на <em>\1: \2×\3 → \4</em>) |
||
(не показано 8 промежуточных версий этого же участника) | |||
Строка 1: | Строка 1: | ||
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} --> | <!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} --> | ||
− | * Граф < | + | * Граф <em>G=(V,E)</em>, веса <em>w: E → N</em> и пропускная способность <em>c: E → N</em> на ребрах, функция требований <em>r: V×V → N</em>. |
− | * Найти сеть Штейнера над <em>G</em> которая удовлетворит требованиям, не превысив пропускные способности, т.е. функция < | + | * Найти сеть Штейнера над <em>G</em> которая удовлетворит требованиям, не превысив пропускные способности, т.е. функция <em>f: E → N</em>, такая, что для каждого ребра <em>e</em>, <m>f(e) ≤ c(e)</m> и для любой пары вершин <em>i</em> и <em>j</em>, число непересекающихся по ребрам путей между <em>i</em> и <em>j</em> будет как минимум <em>r(i,j)</em>, при этом, для кадого ребра <em>e</em> можно использовать <em>f(e)</em> копий ребра <em>e</em>. |
− | * Минимизировать <m>\sum_{e | + | * Минимизировать <m>\sum_{e ∈ E}w(e)f(e)</m>. |
---- | ---- | ||
{{hard-problem-on-lab17|{{PAGENAME}}}} | {{hard-problem-on-lab17|{{PAGENAME}}}} | ||
+ | <!-- * {{has-testdata-and-visualization}} --> | ||
+ | <!-- * {{has-pyomo-model}} --> | ||
+ | <!-- * {{has-npc-reduction}} --> | ||
+ | <!-- * {{add-random-fuzzing-tests}} --> | ||
---- | ---- | ||
<small> | <small> |
Текущая версия на 22:20, 17 апреля 2023
- Граф G=(V,E), веса w: E → N и пропускная способность c: E → N на ребрах, функция требований r: V×V → N.
- Найти сеть Штейнера над G которая удовлетворит требованиям, не превысив пропускные способности, т.е. функция f: E → N, такая, что для каждого ребра e, и для любой пары вершин i и j, число непересекающихся по ребрам путей между i и j будет как минимум r(i,j), при этом, для кадого ребра e можно использовать f(e) копий ребра e.
- Минимизировать .
Задача в лаб22 (рид-онли просмотр)