Hardprob/Minimum Geometric Steiner Tree — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена <!-- start --> на <!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->)
(Массовая правка: замена PCRE <m>(\w[^_⊆]*)\s*⊆\s*(\w)×\s*(\w)</m> на <em>\1 ⊆ \2×\3</em>)
 
(не показаны 4 промежуточные версии этого же участника)
Строка 1: Строка 1:
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
* Набор точек на плоскости <m>P\subseteq Z\times Z</m>.
+
* Набор точек на плоскости <em>P ⊆ Z×Z</em>.
* Найти конечный набор точек Штейнера, <m>Q\subseteq Z\times Z</m>.
+
* Найти конечный набор точек Штейнера, <em>Q ⊆ Z×Z</em>.
* Минимизировать полный вес минимального остовного дерева для набора вершин <m>P\cup Q</m>, где вес ребра <m>\left<(x_1,y_1),(x_2,y_2)\right></m> это округленная евклидова длина <m>\begin{displaymath}\left\lceil\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\right\rceil.\end{displaymath}</m>
+
* Минимизировать полный вес минимального остовного дерева для набора вершин <m>P∪ Q</m>, где вес ребра <m>\left<(x_1,y_1),(x_2,y_2)\right></m> это округленная евклидова длина <m>\begin{displaymath}\left\lceil\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\right\rceil.\end{displaymath}</m>
  
 
----
 
----
 
{{hard-problem-on-lab17|{{PAGENAME}}}}
 
{{hard-problem-on-lab17|{{PAGENAME}}}}
 +
<!-- * {{has-testdata-and-visualization}} -->
 +
<!-- * {{has-pyomo-model}} -->
 +
<!-- * {{has-npc-reduction}} -->
 +
<!-- * {{add-random-fuzzing-tests}} -->
 
----
 
----
 
<small>
 
<small>

Текущая версия на 22:26, 17 апреля 2023

  • Набор точек на плоскости P ⊆ Z×Z.
  • Найти конечный набор точек Штейнера, Q ⊆ Z×Z.
  • Минимизировать полный вес минимального остовного дерева для набора вершин , где вес ребра это округленная евклидова длина

Задача в лаб22 (рид-онли просмотр)