Hardprob/Maximum Minimum Metric K-Spanning Tree — различия между версиями
Материал из DISCOPAL
StasFomin (обсуждение | вклад) (Массовая правка: замена {{hard-problem-on-lab17|{{PAGENAME}}}} на {{hard-problem-on-lab17|{{PAGENAME}}}} <!-- * {{has-testdata-and-visualization}} --> <!-- * {{has-pyomo-model}} --> <!-- * {{has-npc-reduction}} --> <!-- * {{add-random-fuzzing-tests}} -->) |
StasFomin (обсуждение | вклад) |
||
(не показаны 2 промежуточные версии этого же участника) | |||
Строка 1: | Строка 1: | ||
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} --> | <!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} --> | ||
− | * Граф < | + | * Граф <em>G=(V,E)</em>, длина ребер <em>l(e) ∈ N ∀e∈E</em> удовлетворяют неравенству треугольника. |
− | * Найти подмножество < | + | * Найти подмножество <em>V'⊆V</em>, такое, что <em>|V'|=k</em> |
* Максимизировать стоимость минимального остовного дерева подграфа, порожденного <em>V'</em>. | * Максимизировать стоимость минимального остовного дерева подграфа, порожденного <em>V'</em>. | ||
Текущая версия на 06:49, 17 апреля 2023
- Граф G=(V,E), длина ребер l(e) ∈ N ∀e∈E удовлетворяют неравенству треугольника.
- Найти подмножество V'⊆V, такое, что |V'|=k
- Максимизировать стоимость минимального остовного дерева подграфа, порожденного V'.
Задача в лаб22 (рид-онли просмотр)