MAX-CUT: вероятностное округление/Задачи/eupce-6-19 — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
 
(не показаны 3 промежуточные версии 2 участников)
Строка 1: Строка 1:
{{проверено|}}
+
{{проверено|[[Участник:StasFomin|StasFomin]] 21:10, 17 декабря 2024 (UTC)}}
 
{{bonus}}
 
{{bonus}}
[[File:eupce-6-19_2023-05-19_12-22-45_image0.png|480px]]
+
 
[[File:eupce-6-19_2023-05-19_12-23-03_image0.png|480px]]
+
<latex>
 +
Let $G=(V, E)$ be an undirected graph and suppose each $v \in V$ is
 +
associated with a set S(v) of $8r$ colors, where $r \geq 1$.
 +
 
 +
Suppose, in addition, that for each $v \in V$ and $c \in S(V)$
 +
there are at most $r$ neighbors $u$ of $v$ such that $c$ lies in $S(u)$.
 +
 
 +
Prove that there is a proper coloring of $G$ assigning to each vertex $v$ a color from its class $S(v)$ such that, for any edge $(u,v) \in E$, the colors assigned to $u$ and $v$ are different.
 +
 
 +
You may want to let $A_{u,v,c}$ be the event that $u$ and $v$ are both colored with color $c$ and then consider the family of such events.
 +
</latex>
 +
<!-- [[File:eupce-6-19_2023-05-19_12-22-45_image0.png|480px]]
 +
[[File:eupce-6-19_2023-05-19_12-23-03_image0.png|480px]] -->
  
 
[[Категория:Теоретические задачи]]
 
[[Категория:Теоретические задачи]]

Текущая версия на 21:10, 17 декабря 2024

Проверено: StasFomin 21:10, 17 декабря 2024 (UTC)