Hardprob/Minimum Metric Bottleneck Wandering Salesperson Problem — различия между версиями
Материал из DISCOPAL
StasFomin (обсуждение | вклад) (Новая страница: «<!-- start --> * Набор <em>C</em> из <em>m</em> городов, стартовый город <m>s\in C</m>, финишный город <m>f\in C</m>, р…») |
StasFomin (обсуждение | вклад) (Массовая правка: замена <!-- start --> на <!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->) |
||
Строка 1: | Строка 1: | ||
− | <!-- start --> | + | <!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} --> |
* Набор <em>C</em> из <em>m</em> городов, стартовый город <m>s\in C</m>, финишный город <m>f\in C</m>, расстояния <m>d(c_i,c_j)\in N</m> удовлетворяющие неравенству треугольника. | * Набор <em>C</em> из <em>m</em> городов, стартовый город <m>s\in C</m>, финишный город <m>f\in C</m>, расстояния <m>d(c_i,c_j)\in N</m> удовлетворяющие неравенству треугольника. | ||
* Найти простой путь из начального города <em>s</em> в финишный город <em>f</em> проходящий через все города из <em>C</em>, т.е. перестановка <m>\pi: [1..m]\rightarrow [1..m]</m>, такая что <m>v_{\pi(1)}=s</m> и <m>v_{\pi(m)}=f</m>. | * Найти простой путь из начального города <em>s</em> в финишный город <em>f</em> проходящий через все города из <em>C</em>, т.е. перестановка <m>\pi: [1..m]\rightarrow [1..m]</m>, такая что <m>v_{\pi(1)}=s</m> и <m>v_{\pi(m)}=f</m>. |
Версия 19:59, 10 апреля 2023
- Набор C из m городов, стартовый город , финишный город , расстояния удовлетворяющие неравенству треугольника.
- Найти простой путь из начального города s в финишный город f проходящий через все города из C, т.е. перестановка , такая что и .
- Минимизировать максимальную длину ребра в пути.
Задача в лаб22 (рид-онли просмотр)
- Задача в базе NP-полных задач Вигго Кана
- Код задачи в книге «ГД» → «ND24»