Hardprob/Maximum Disjoint Connecting Paths — различия между версиями
Материал из DISCOPAL
StasFomin (обсуждение | вклад) (Новая страница: «<!-- start --> * Мультиграф <m>G=\left(V,E\right)</m>, коллекция пар вершин <m>T=\{(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)\}</m>. * На…») |
StasFomin (обсуждение | вклад) (Массовая правка: замена <!-- start --> на <!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->) |
||
Строка 1: | Строка 1: | ||
− | <!-- start --> | + | <!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} --> |
* Мультиграф <m>G=\left(V,E\right)</m>, коллекция пар вершин <m>T=\{(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)\}</m>. | * Мультиграф <m>G=\left(V,E\right)</m>, коллекция пар вершин <m>T=\{(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)\}</m>. | ||
* Найти коллекцию непересекающихся по ребрам путей в <em>G</em> соединающих некоторые из пар <m>(s_i,t_i)</m>, т.е. путь это последовательность вершин <m>u_1,u_2, \ldots, u_m</m>, такая что для некоторого <em>i</em>, <m>u_1=s_i, u_m=t_i</m>, и для всех <em>j</em>, <m>(u_j ,u_{j+1})\in E</m>. | * Найти коллекцию непересекающихся по ребрам путей в <em>G</em> соединающих некоторые из пар <m>(s_i,t_i)</m>, т.е. путь это последовательность вершин <m>u_1,u_2, \ldots, u_m</m>, такая что для некоторого <em>i</em>, <m>u_1=s_i, u_m=t_i</m>, и для всех <em>j</em>, <m>(u_j ,u_{j+1})\in E</m>. |
Версия 19:59, 10 апреля 2023
- Мультиграф , коллекция пар вершин .
- Найти коллекцию непересекающихся по ребрам путей в G соединающих некоторые из пар , т.е. путь это последовательность вершин , такая что для некоторого i, , и для всех j, .
- Максимизация числа пар вершин , которые будут соединены этими путями.
Задача в лаб22 (рид-онли просмотр)
- Задача в базе NP-полных задач Вигго Кана
- Код задачи в книге «ГД» → «ND40»