Hardprob/Maximum Disjoint Connecting Paths — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Новая страница: «<!-- start --> * Мультиграф <m>G=\left(V,E\right)</m>, коллекция пар вершин <m>T=\{(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)\}</m>. * На…»)
 
(Массовая правка: замена <!-- start --> на <!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->)
Строка 1: Строка 1:
<!-- start -->
+
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
* Мультиграф <m>G=\left(V,E\right)</m>, коллекция пар вершин <m>T=\{(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)\}</m>.
 
* Мультиграф <m>G=\left(V,E\right)</m>, коллекция пар вершин <m>T=\{(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)\}</m>.
 
* Найти коллекцию непересекающихся по ребрам путей в <em>G</em> соединающих некоторые из пар <m>(s_i,t_i)</m>, т.е. путь это последовательность вершин <m>u_1,u_2, \ldots, u_m</m>, такая что для некоторого <em>i</em>, <m>u_1=s_i, u_m=t_i</m>, и для всех <em>j</em>,  <m>(u_j ,u_{j+1})\in E</m>.
 
* Найти коллекцию непересекающихся по ребрам путей в <em>G</em> соединающих некоторые из пар <m>(s_i,t_i)</m>, т.е. путь это последовательность вершин <m>u_1,u_2, \ldots, u_m</m>, такая что для некоторого <em>i</em>, <m>u_1=s_i, u_m=t_i</m>, и для всех <em>j</em>,  <m>(u_j ,u_{j+1})\in E</m>.

Версия 19:59, 10 апреля 2023

  • Мультиграф , коллекция пар вершин .
  • Найти коллекцию непересекающихся по ребрам путей в G соединающих некоторые из пар , т.е. путь это последовательность вершин , такая что для некоторого i, , и для всех j, .
  • Максимизация числа пар вершин , которые будут соединены этими путями.

Задача в лаб22 (рид-онли просмотр)