Hardprob/Minimum Maximum Disjoint Connecting Paths — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Новая страница: «<!-- start --> * Граф <m>G=\left(V,E\right)</m>, пути на ребрах <m>l:E \rightarrow N</m>, и некоторая пара вершин <em>s,t</em>…»)
 
Строка 1: Строка 1:
 
<!-- start -->
 
<!-- start -->
* Граф <m>G=\left(V,E\right)</m>, пути на ребрах <m>l:E \rightarrow N</m>, и некоторая пара вершин <em>s,t</em> в <em>V</em>.
+
* Граф <m>G=\left(V,E\right)</m>, пути на ребрах <m>l:E \rightarrow N</m>, и некоторая пара вершин <em>s,t</em> в <em>V</em>. Найти два непересекающихся по вершинам пути в <em>G</em>, соединающих <em>s</em> и <em>t</em>, т.е. две последовательности вершин <m>u_1,u_2,\ldots,u_m</m> и <m>v_1,v_2,\ldots,v_n</m>, такие что  
Найти два непересекающихся по вершинам пути в <em>G</em>, соединающих <em>s</em> и <em>t</em>, т.е. две последовательности вершин <m>u_1,u_2,\ldots,u_m</m> и <m>v_1,v_2,\ldots,v_n</m>, такие что  
+
 
** <m>\vert\{u_1,u_2,\ldots,u_m,v_1,v_2,\ldots,v_n\}\vert=m+n</m>
 
** <m>\vert\{u_1,u_2,\ldots,u_m,v_1,v_2,\ldots,v_n\}\vert=m+n</m>
 
** <m>(s,u_1) ∈ E</m>
 
** <m>(s,u_1) ∈ E</m>

Версия 23:19, 8 апреля 2023

  • Граф , пути на ребрах , и некоторая пара вершин s,t в V. Найти два непересекающихся по вершинам пути в G, соединающих s и t, т.е. две последовательности вершин и , такие что
  • Минимизировать максимальную длину этих путей, т.е.


Задача в лаб22 (рид-онли просмотр)