Hardprob/Minimum Geometric 3-Degree Spanning Tree — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена \subseteq на ⊆)
(Массовая правка: замена \times на ×)
Строка 1: Строка 1:
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
* Множество <m>P⊆ Z\times Z</m> точек на плоскости.
+
* Множество <m>P⊆ Z</m> точек на плоскости.
 
* Найти остовное дерево <em>T</em> для <em>P</em>, в котором нет вершин степени большей 3.
 
* Найти остовное дерево <em>T</em> для <em>P</em>, в котором нет вершин степени большей 3.
 
* Минимизировать полный вес этого дерева, <m>\sum_{(u,v) \in T}d(u,v)</m>, где <em>d(u,v)</em> — евклидово расстояние между <em>u</em> и <em>v</em>.
 
* Минимизировать полный вес этого дерева, <m>\sum_{(u,v) \in T}d(u,v)</m>, где <em>d(u,v)</em> — евклидово расстояние между <em>u</em> и <em>v</em>.

Версия 11:36, 17 апреля 2023

  • Множество точек на плоскости.
  • Найти остовное дерево T для P, в котором нет вершин степени большей 3.
  • Минимизировать полный вес этого дерева, , где d(u,v) — евклидово расстояние между u и v.

Задача в лаб22 (рид-онли просмотр)