Hardprob/Minimum Sum Of Squares — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена \ge на ≥)
(Массовая правка: замена \in на ∈)
Строка 1: Строка 1:
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
* Конечное множество <em>A</em>, задан размер <m>s(a)\in Z^+</m> для каждого <m>a\in A</m>, и целое <m>K≥  2</m>.
+
* Конечное множество <em>A</em>, задан размер <m>s(a)∈  Z^+</m> для каждого <m>a∈  A</m>, и целое <m>K≥  2</m>.
 
* Найти разбиение <em>A</em> на множество из <em>K</em> непересекающихся множеств <m>A_1, A_2,\ldots,A_K</m>.
 
* Найти разбиение <em>A</em> на множество из <em>K</em> непересекающихся множеств <m>A_1, A_2,\ldots,A_K</m>.
 
* Минимизировать сумму квадратов их размеров  
 
* Минимизировать сумму квадратов их размеров  
 
<m>
 
<m>
 
  \begin{displaymath}
 
  \begin{displaymath}
\sum_{i=1}^{K}\left(\sum_{a\in A_i} s(a)\right)^2 → \min.
+
\sum_{i=1}^{K}\left(\sum_{a∈  A_i} s(a)\right)^2 → \min.
 
\end{displaymath}
 
\end{displaymath}
 
</m>
 
</m>

Версия 18:01, 17 апреля 2023

  • Конечное множество A, задан размер для каждого , и целое .
  • Найти разбиение A на множество из K непересекающихся множеств .
  • Минимизировать сумму квадратов их размеров


Задача в лаб22 (рид-онли просмотр)