MAX-CUT: вероятностное округление/Задачи/merge-vertices — различия между версиями
Материал из DISCOPAL
StasFomin (обсуждение | вклад) |
StasFomin (обсуждение | вклад) |
||
Строка 11: | Строка 11: | ||
стянуть ребро e | стянуть ребро e | ||
</code-python> | </code-python> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<neato> | <neato> | ||
Строка 60: | Строка 53: | ||
</neato> | </neato> | ||
− | + | В конце, «восстанавливаем разрез» — каждая его часть соответствует вершинам, содержащимся в одной из метавершин. | |
---- | ---- | ||
Доказать, что вероятностный алгоритм вычисляет минимальный разрез с вероятностью <m>P \ge \frac{2}{n(n-1)}</m> | Доказать, что вероятностный алгоритм вычисляет минимальный разрез с вероятностью <m>P \ge \frac{2}{n(n-1)}</m> |
Версия 08:11, 19 декабря 2013
Минимальный разрез в графе (стягивание вершин)
Рассмотрим рандомизированный алгоритм Каргера-Штейна для неориентированных графов с кратными ребрами. Пусть дан мультиграф c вершинами и ребрами.
Алгоритм основан на операции стягивания ребра между двумя вершинами. После стягивания ребра получим новый граф без вершины в котором каждое ребро вида заменено ребром (петли также удаляются). Алгоритм следующий
for i=0 to n-2: выбрать случайное ребро e стянуть ребро e
Вот конец его работы.
В конце, «восстанавливаем разрез» — каждая его часть соответствует вершинам, содержащимся в одной из метавершин.
Доказать, что вероятностный алгоритм вычисляет минимальный разрез с вероятностью