Hardprob/Maximum Disjoint Connecting Paths — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена \in на ∈)
(Массовая правка: замена \ldots на …)
Строка 1: Строка 1:
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
* Мультиграф <em>G=(V,E)</em>, коллекция пар вершин <m>T=\{(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)\}</m>.
+
* Мультиграф <em>G=(V,E)</em>, коллекция пар вершин <m>T=\{(s_1,t_1),(s_2,t_2),,(s_k,t_k)\}</m>.
* Найти коллекцию непересекающихся по ребрам путей в <em>G</em> соединающих некоторые из пар <m>(s_i,t_i)</m>, т.е. путь это последовательность вершин <m>u_1,u_2, \ldots, u_m</m>, такая что для некоторого <em>i</em>, <m>u_1=s_i, u_m=t_i</m>, и для всех <em>j</em>,  <m>(u_j ,u_{j+1})∈  E</m>.
+
* Найти коллекцию непересекающихся по ребрам путей в <em>G</em> соединающих некоторые из пар <m>(s_i,t_i)</m>, т.е. путь это последовательность вершин <m>u_1,u_2, , u_m</m>, такая что для некоторого <em>i</em>, <m>u_1=s_i, u_m=t_i</m>, и для всех <em>j</em>,  <m>(u_j ,u_{j+1})∈  E</m>.
 
* Максимизация числа пар вершин <m>(s_i,t_i)</m>, которые будут соединены этими путями.
 
* Максимизация числа пар вершин <m>(s_i,t_i)</m>, которые будут соединены этими путями.
  

Версия 22:44, 17 апреля 2023

  • Мультиграф G=(V,E), коллекция пар вершин .
  • Найти коллекцию непересекающихся по ребрам путей в G соединающих некоторые из пар , т.е. путь это последовательность вершин , такая что для некоторого i, , и для всех j, .
  • Максимизация числа пар вершин , которые будут соединены этими путями.

Задача в лаб22 (рид-онли просмотр)