2011-gre-cs-practice-book.pdf/Q11 — различия между версиями
Материал из DISCOPAL
Urmat A (обсуждение | вклад) |
Urmat A (обсуждение | вклад) |
||
Строка 23: | Строка 23: | ||
Взглянем на картинку и разберем: | Взглянем на картинку и разберем: | ||
− | #если задача A NP- | + | #если задача A в классе NP-полных и для нее существует полиномиальный алгоритм, то действительно P=NP, так как для всего NP тоже существует полиномиальный алгоритм |
#если задача B в NP, но необязательно в классе NP-полных и для нее существует полиномиальный алгоритм, то все равно есть задачи из класса NP-полных, поэтому равенство P=NP не выполняется | #если задача B в NP, но необязательно в классе NP-полных и для нее существует полиномиальный алгоритм, то все равно есть задачи из класса NP-полных, поэтому равенство P=NP не выполняется | ||
#Если A лежит в классе NP-полных и для нее существует полиномиальный алгоритм, то и для всего NP тоже существует полиномиальный алгоритм, то есть для B тоже | #Если A лежит в классе NP-полных и для нее существует полиномиальный алгоритм, то и для всего NP тоже существует полиномиальный алгоритм, то есть для B тоже |
Версия 16:08, 18 декабря 2024
Задача зарезервирована: Urmat A 16:08, 18 декабря 2024 (UTC)
Вопрос: Q11-08c765
Предположим, что задача A является NP-полной, а задача B находится в NP, но не обязательно NP-полной. Какое из следующих утверждений обязательно верно?
- . Полиномиальный алгоритм для A подразумевает P = NP.
- . Полиномиальный алгоритм для B подразумевает P = NP.
- . Полиномиальный алгоритм для A подразумевает полиномиальный алгоритм для B
Ответы
- только 1
- только 2
- только 1 и 2
- Правильный ответ: только 1 и 3
- 1, 2 и 3
Объяснение
Исходники — вопрос 11 на 20 странице книги «2011-gre-cs-practice-book.pdf»
Справка: NP-hard это NP-сложные, а NP-complete это NP-полные.
Взглянем на картинку и разберем:
- если задача A в классе NP-полных и для нее существует полиномиальный алгоритм, то действительно P=NP, так как для всего NP тоже существует полиномиальный алгоритм
- если задача B в NP, но необязательно в классе NP-полных и для нее существует полиномиальный алгоритм, то все равно есть задачи из класса NP-полных, поэтому равенство P=NP не выполняется
- Если A лежит в классе NP-полных и для нее существует полиномиальный алгоритм, то и для всего NP тоже существует полиномиальный алгоритм, то есть для B тоже Решено: Urmat A 16:08, 18 декабря 2024 (UTC)