2011-gre-cs-practice-book.pdf/Q51 — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
 
Строка 1: Строка 1:
 
== Вопрос: Q51-08c765 ==
 
== Вопрос: Q51-08c765 ==
  
Массив, называемый k-упорядоченным, — это почти упорядоченный массив, в котором ни один элемент не находится дальше, чем на k позиций от своего конечного места в отсортированном массиве. Таким образом, 0-упорядоченный массив полностью отсортирован, а любой массив размера n является n-упорядоченным.
+
Массив, называемый ''k-упорядоченным'', — это почти упорядоченный массив, в котором ни один элемент не находится дальше, чем на ''k'' позиций от своего конечного места в отсортированном массиве.  
 +
Таким образом, 0-упорядоченный массив полностью отсортирован, а любой массив размера ''n'' является n-упорядоченным.
  
 
Предположим, что A — это k-упорядоченный массив размера n. Если для сортировки A используется сортировка вставками, какова будет сложность по числу сравнений в худшем случае?
 
Предположим, что A — это k-упорядоченный массив размера n. Если для сортировки A используется сортировка вставками, какова будет сложность по числу сравнений в худшем случае?
Строка 19: Строка 20:
 
Таким образом, в каждом из n шагов вставки мы делаем до k сравнений. Суммарно получается порядка kn сравнений. То есть сложность в худшем случае будет <m>\(\Theta(kn)\)</m>.
 
Таким образом, в каждом из n шагов вставки мы делаем до k сравнений. Суммарно получается порядка kn сравнений. То есть сложность в худшем случае будет <m>\(\Theta(kn)\)</m>.
  
{{question-ok|}}
+
{{question-ok|[[Участник:StasFomin|StasFomin]] 10:55, 9 января 2025 (UTC)}}
  
{{checkme|[[Участник:Nikitashapovalov|Nikitashapovalov]] 00:44, 9 января 2025 (UTC)}}
+
[[Категория:Sorting]]

Текущая версия на 10:55, 9 января 2025

Вопрос: Q51-08c765

Массив, называемый k-упорядоченным, — это почти упорядоченный массив, в котором ни один элемент не находится дальше, чем на k позиций от своего конечного места в отсортированном массиве. Таким образом, 0-упорядоченный массив полностью отсортирован, а любой массив размера n является n-упорядоченным.

Предположим, что A — это k-упорядоченный массив размера n. Если для сортировки A используется сортировка вставками, какова будет сложность по числу сравнений в худшем случае?

Ответы

  • Правильный ответ:

Объяснение

Исходники — вопрос 51 на 39 странице книги «2011-gre-cs-practice-book.pdf»

Для k-упорядоченного массива при сортировке вставками каждый элемент может «съехать» максимум на k позиций от своего итогового места. Когда мы идём по элементам слева направо, чтобы вставить элемент на правильное место, в худшем случае придётся сравнивать его с не более чем k предыдущими элементами.

Таким образом, в каждом из n шагов вставки мы делаем до k сравнений. Суммарно получается порядка kn сравнений. То есть сложность в худшем случае будет .