Hardprob/Maximum Priority Flow — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Новая страница: «<!-- start --> * Направленный граф <m>G=\left(V,E\right)</m>, вершины-источники <m>s_1, \ldots, s_k \in V</m>, вершины-ст…»)
 
(Массовая правка: замена <!-- start --> на <!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->)
Строка 1: Строка 1:
<!-- start -->
+
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
* Направленный граф <m>G=\left(V,E\right)</m>, вершины-источники <m>s_1, \ldots, s_k \in V</m>, вершины-стоки <m>t_1, \ldots, t_k \in V</m>, емкость ребер <m>c:E \rightarrow R</m>, ограничения на вершинах <m>b: V \rightarrow R</m>, и для любой вершины <em>v</em>, есть некий порядок исходящих ребер.
 
* Направленный граф <m>G=\left(V,E\right)</m>, вершины-источники <m>s_1, \ldots, s_k \in V</m>, вершины-стоки <m>t_1, \ldots, t_k \in V</m>, емкость ребер <m>c:E \rightarrow R</m>, ограничения на вершинах <m>b: V \rightarrow R</m>, и для любой вершины <em>v</em>, есть некий порядок исходящих ребер.
 
* Найти приоритетный поток <em>f</em>, т.е. функция <m>f:E \rightarrow  R</m>, такая что  
 
* Найти приоритетный поток <em>f</em>, т.е. функция <m>f:E \rightarrow  R</m>, такая что  

Версия 19:59, 10 апреля 2023

  • Направленный граф , вершины-источники , вершины-стоки , емкость ребер , ограничения на вершинах , и для любой вершины v, есть некий порядок исходящих ребер.
  • Найти приоритетный поток f, т.е. функция , такая что
    • для любого ребра e,
    • для любой вершины , поток сохраняется в v
    • для любой вершины v
      • поток покидающий v не превышает b(v)
      • для исходящей любой пары ребер , если и , то .
  • Максимизировать поток, приходящей в первый сток , т.е. .

Задача в лаб22 (рид-онли просмотр)