Hardprob/Minimum Precedence Constrained Sequencing With Delays — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Новая страница: «<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} --> * Набор задач <em>T</em>, положительное целое <em>D</em>, для…»)
 
Строка 5: Строка 5:
 
* Найти одно-процессорное расписание для <em>T</em>, соблюдающее отношения предшествования и задержки, т.е. инъективная функция <m>S: T\rightarrow Z^+</m>, такая, что для каждого ребра <m>\left<t_i,t_j\right>\in E</m>, выполняется <m>S(t_j)-S(t_i)>d(t_i)</m>
 
* Найти одно-процессорное расписание для <em>T</em>, соблюдающее отношения предшествования и задержки, т.е. инъективная функция <m>S: T\rightarrow Z^+</m>, такая, что для каждого ребра <m>\left<t_i,t_j\right>\in E</m>, выполняется <m>S(t_j)-S(t_i)>d(t_i)</m>
 
* Минимизировать время выполнение всего расписания.
 
* Минимизировать время выполнение всего расписания.
<m>
+
 
\max\limits_{t\in T} S(t) → \min
+
<m>\max\limits_{t\in T} S(t) → \min</m>
</m>
+
  
 
----
 
----

Версия 22:19, 11 апреля 2023


  • Набор задач T, положительное целое D, для каждой задачи есть целочисленная задержка ,
    • направленный ациклический граф , определяющий отношения предшествования для этих задач.
  • Найти одно-процессорное расписание для T, соблюдающее отношения предшествования и задержки, т.е. инъективная функция , такая, что для каждого ребра , выполняется
  • Минимизировать время выполнение всего расписания.


Задача в лаб22 (рид-онли просмотр)