Hardprob/Minimum Quotient Cut — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена <m>V' \subseteq V</m> на <em>V'⊆V</em>)
(Массовая правка: замена \subseteq на ⊆)
Строка 1: Строка 1:
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
* Граф <em>G=(V,E)</em>, веса на вершинах <m>w:V\rightarrow N</m>, стоимости на ребрах <m>c : E \rightarrow N</m>.
 
* Граф <em>G=(V,E)</em>, веса на вершинах <m>w:V\rightarrow N</m>, стоимости на ребрах <m>c : E \rightarrow N</m>.
* Найти разрез <m>C \subseteq V</m>.
+
* Найти разрез <m>C V</m>.
 
* Минимизировать коэффициент разреза, т.е.
 
* Минимизировать коэффициент разреза, т.е.
 
<m>\begin{displaymath}\frac{c(C)}{\min\{w(C),w(V-C)\}} \end{displaymath}</m>, где <em>c(C)</em> означает сумму стоимостей ребер <em>(u,v)</em>, таких, что либо <m>u \in C</m> и <m>v \not\in C</m> или <m>u \not\in C</m> и <m>v \in C</m> и для любого подмножества <em>V'⊆V</em>, <em>w(V')</em> означает сумму весов вершин из <em>V'</em>.
 
<m>\begin{displaymath}\frac{c(C)}{\min\{w(C),w(V-C)\}} \end{displaymath}</m>, где <em>c(C)</em> означает сумму стоимостей ребер <em>(u,v)</em>, таких, что либо <m>u \in C</m> и <m>v \not\in C</m> или <m>u \not\in C</m> и <m>v \in C</m> и для любого подмножества <em>V'⊆V</em>, <em>w(V')</em> означает сумму весов вершин из <em>V'</em>.

Версия 11:08, 17 апреля 2023

  • Граф G=(V,E), веса на вершинах , стоимости на ребрах .
  • Найти разрез .
  • Минимизировать коэффициент разреза, т.е.

, где c(C) означает сумму стоимостей ребер (u,v), таких, что либо и или и и для любого подмножества V'⊆V, w(V') означает сумму весов вершин из V'.


Задача в лаб22 (рид-онли просмотр)