Hardprob/Maximum Degree Bounded Connected Subgraph — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена \ge на ≥)
(Массовая правка: замена \rightarrow на →)
Строка 1: Строка 1:
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
  
* Граф <em>G=(V,E)</em>, вес на ребрах <m>$w : E \rightarrow N</m> и целое <m>d≥  2</m>
+
* Граф <em>G=(V,E)</em>, вес на ребрах <m>$w : E →  N</m> и целое <m>d≥  2</m>
 
* Найти подмножество ребер <em>E' ⊆ E</em>, такое что подграф <em>G'=(V,E')</em> связный и нет вершин степени большей <em>d</em>.
 
* Найти подмножество ребер <em>E' ⊆ E</em>, такое что подграф <em>G'=(V,E')</em> связный и нет вершин степени большей <em>d</em>.
  

Версия 11:33, 17 апреля 2023


  • Граф G=(V,E), вес на ребрах и целое
  • Найти подмножество ребер E' ⊆ E, такое что подграф G'=(V,E') связный и нет вершин степени большей d.

Максимизировать полный вес этого подграфа,


Задача в лаб22 (рид-онли просмотр)