Hardprob/Minimum Metric Bottleneck Wandering Salesperson Problem — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена {{hard-problem-on-lab17|{{PAGENAME}}}} на {{hard-problem-on-lab17|{{PAGENAME}}}} <!-- * {{has-testdata-and-visualization}} --> <!-- * {{has-pyomo-model}} --> <!-- * {{has-npc-reduction}} --> <!-- * {{add-random-fuzzing-tests}} -->)
(Массовая правка: замена \rightarrow на →)
Строка 1: Строка 1:
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
<!-- start --><!-- {{svg-image-for-hard-problem|{{PAGENAME}}}} -->
 
* Набор <em>C</em> из <em>m</em> городов, стартовый город <m>s\in C</m>, финишный город <m>f\in C</m>, расстояния <m>d(c_i,c_j)\in N</m> удовлетворяющие неравенству треугольника.
 
* Набор <em>C</em> из <em>m</em> городов, стартовый город <m>s\in C</m>, финишный город <m>f\in C</m>, расстояния <m>d(c_i,c_j)\in N</m> удовлетворяющие неравенству треугольника.
* Найти простой путь из начального города <em>s</em> в финишный город <em>f</em> проходящий через все города из <em>C</em>, т.е. перестановка <m>\pi: [1..m]\rightarrow [1..m]</m>, такая что <m>v_{\pi(1)}=s</m> и <m>v_{\pi(m)}=f</m>.
+
* Найти простой путь из начального города <em>s</em> в финишный город <em>f</em> проходящий через все города из <em>C</em>, т.е. перестановка <m>\pi: [1..m]→  [1..m]</m>, такая что <m>v_{\pi(1)}=s</m> и <m>v_{\pi(m)}=f</m>.
 
* Минимизировать максимальную длину ребра в пути. <m>
 
* Минимизировать максимальную длину ребра в пути. <m>
 
\begin{displaymath}
 
\begin{displaymath}

Версия 11:34, 17 апреля 2023

  • Набор C из m городов, стартовый город , финишный город , расстояния удовлетворяющие неравенству треугольника.
  • Найти простой путь из начального города s в финишный город f проходящий через все города из C, т.е. перестановка , такая что и .
  • Минимизировать максимальную длину ребра в пути.

Задача в лаб22 (рид-онли просмотр)