Участник:StasFomin/Bookmarks/Algorithms — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(2024-01)
Строка 14: Строка 14:
 
=== 2024-01 ===
 
=== 2024-01 ===
  
* 2024-01-20, 00:29:21: [https://github.com/tlkahn/zkSNARKs-Cryptography-Protocol-Survey tlkahn/zkSNARKs-Cryptography-Protocol-Survey]
 
* 2024-01-20, 00:23:51: [https://github.com/prokls/theoretical-computer-science-2/blob/master/randomized_complexity_classes.pdf theoretical-computer-science-2/randomized_complexity_classes.pdf at master · prokls/theoretical-computer-science-2]
 
* 2024-01-19, 23:12:56: [https://zhuanlan.zhihu.com/p/37270132 Теорема PCP, часть 1: Введение - Чжиху]
 
* 2024-01-19, 23:07:56: [https://github.com/mourad1081/complexity-exam-questions mourad1081/complexity-exam-questions: Réponse aux questions de complexité]
 
* 2024-01-19, 23:06:42: [https://github.com/LucaCappelletti94/lectures-notes/tree/0b0550ee36eab19d0d48f74e407beee1e5a3e78f/Unimi/Algoritmi%20e%20Complessita lectures-notes/Unimi/Algoritmi e Complessita at 0b0550ee36eab19d0d48f74e407beee1e5a3e78f · LucaCappelletti94/lectures-notes]
 
* 2024-01-19, 22:51:02: [https://github.com/BrownAppliedCryptography/notes BrownAppliedCryptography/notes: Scribed course notes.]
 
* 2024-01-19, 22:49:27: [https://github.com/mnielsen/expander_graph_notes mnielsen/expander_graph_notes: Notes on expander graphs]
 
* 2024-01-19, 22:48:32: [https://github.com/pragmaticTNT pragmaticTNT]
 
* 2024-01-19, 22:43:13: [https://github.com/mnielsen/expander_graph_notes/blob/193880dde69c1aa2bdf974a4975a0b960a278575/expanders_github.tex expander_graph_notes/expanders_github.tex at 193880dde69c1aa2bdf974a4975a0b960a278575 · mnielsen/expander_graph_notes]
 
* 2024-01-19, 02:36:35: [https://github.com/sleepymalc/Notes/blob/7e28b1c548da109b7e89a62acc6ed1076841352c/EECS598-001-Approximation-Algorithms-and-Hardness-of-Approximation/Lectures/lec_2.tex Notes/EECS598-001-Approximation-Algorithms-and-Hardness-of-Approximation/Lectures/lec_2.tex at 7e28b1c548da109b7e89a62acc6ed1076841352c · sleepymalc/Notes]
 
* 2024-01-19, 02:16:16: [https://github.com/sleepymalc/Notes/tree/7e28b1c548da109b7e89a62acc6ed1076841352c/EECS598-001-Approximation-Algorithms-and-Hardness-of-Approximation Notes/EECS598-001-Approximation-Algorithms-and-Hardness-of-Approximation at 7e28b1c548da109b7e89a62acc6ed1076841352c · sleepymalc/Notes]
 
* 2024-01-19, 01:41:18: [https://github.com/arielgabizon/Lectures/blob/master/4elemproofAarhus2019.pdf Lectures/4elemproofAarhus2019.pdf at master · arielgabizon/Lectures]
 
* 2024-01-19, 01:10:29: [https://github.com/Landarzar/complexityPoster/blob/master/poster.pdf complexityPoster/poster.pdf at master · Landarzar/complexityPoster]
 
 
* 2024-01-19, 00:54:25: [https://github.com/jarrodmillman/pcp/blob/master/final.tex pcp/final.tex at master · jarrodmillman/pcp]
 
* 2024-01-19, 00:54:25: [https://github.com/jarrodmillman/pcp/blob/master/final.tex pcp/final.tex at master · jarrodmillman/pcp]
 
* 2024-01-18, 22:17:49: [https://github.com/SanskarX10/Coding-Graph-Theory-101/tree/main SanskarX10/Coding-Graph-Theory-101: Coding and explanation of Graph theory algorithms used in computer science in python-3 . These set of notebooks acts as a course in graph theory.]
 
* 2024-01-18, 22:17:49: [https://github.com/SanskarX10/Coding-Graph-Theory-101/tree/main SanskarX10/Coding-Graph-Theory-101: Coding and explanation of Graph theory algorithms used in computer science in python-3 . These set of notebooks acts as a course in graph theory.]

Версия 16:32, 3 января 2025

2024

2024-12

2024-05


2024-03

2024-01

2023

2023-11

2023-10

2023-09

2023-08

2023-06

2023-03

2022

2022-04

  • 2022-04-27, 22:04:58: Nick Titterton
    X = cvx.Variable((V, V), PSD=True)

2022-03

2021

2021-12

2021-11

2021-10

2021-09

2021-08

2021-07

2021-06

2021-05

  • 2021-05-30, 11:24:30: Facebook
    Аллен Дауни прямо радует - читается хорошо, без академической воды и понятно, с адекватными и ясными примерами практических задач. Последний раз все было так ясно и лаконично при перерешивании задач по терверу из советского учебника Вентцель и книги по байесовским методам Джона Крушке. Покрутил, наверное, в 10 раз в голове теорему Байеса и, вообще, понятие вероятности, условной вероятности, совместной вероятности, априорного и апостериорного распределения, сопряженного приора, pdf, pmf, cdf с разных сторон (и в очередной раз так и не просек простую идею бета-распределения, но, верю, она же есть) - ну чтобы чуйка развилась еще больше. Я честно, от всего сердца и ума, делал несколько подходов к прикладной байесовской статистике с разных сторон и с разными инструментами, прочитал, наверно несколько книг (поняв в них далеко не все) и не помню уже как много статей, но постоянно преследовал вопрос - а зачем и как это мне поможет в повседневной практике? Основная цель, которую я преследовал и до сих пор преследую для себя - научиться понимать "небольшие" данные и причины, стоящие за ними глубже, чем позволяют популярные статистические методы и мало кем, на самом деле, глубоко понимаемые доверительные интервалы на хи-квадратах, погоняемых группами сТЬЮдентов

2021-04

2021-03

2021-02

2021-01

2020

2020-12

2020-11

2020-10

2020-09

2020-08

2020-07