Участник:StasFomin/Bookmarks/Algorithms — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(2024-01)
(2024-01)
Строка 14: Строка 14:
 
=== 2024-01 ===
 
=== 2024-01 ===
  
* 2024-01-18, 21:40:45: [https://github.com/Novota15/fourier-transforms-in-python Novota15/fourier-transforms-in-python: A jupyter python notebook that provides a crash course on Fourier Series, Fourier Transforms, Fast Fourier Transforms, and improving Chebyshev Interpolation with FFT]
 
* 2024-01-18, 21:37:53: [https://github.com/nivkeren/computational-methods nivkeren/computational-methods: computational-methods course notebooks]
 
* 2024-01-18, 21:36:24: [https://github.com/ptah23/audio-transformers-course-notebooks ptah23/audio-transformers-course-notebooks: Python notebooks for hugging face audio transformers course]
 
* 2024-01-18, 21:31:16: [https://github.com/iutzeler/refresher-course iutzeler/refresher-course: Jupyter Notebooks for practical sessions of the "Refresher Course in Matrix Analysis and Numerical Optimization" at Université Grenoble Alpes]
 
 
* 2024-01-18, 21:30:20: [https://github.com/codeninja55/mathematic_notebooks/tree/master codeninja55/mathematic_notebooks: A repository store for all mathematic references, jupyter notebooks, and notes from various courses taken.]
 
* 2024-01-18, 21:30:20: [https://github.com/codeninja55/mathematic_notebooks/tree/master codeninja55/mathematic_notebooks: A repository store for all mathematic references, jupyter notebooks, and notes from various courses taken.]
 
* 2024-01-18, 21:26:26: [https://github.com/juanklopper/Linear-algebra-for-data-science-with-python/tree/master juanklopper/Linear-algebra-for-data-science-with-python: Jupyter notebooks for my course on linear algebra using symbolic python.]
 
* 2024-01-18, 21:26:26: [https://github.com/juanklopper/Linear-algebra-for-data-science-with-python/tree/master juanklopper/Linear-algebra-for-data-science-with-python: Jupyter notebooks for my course on linear algebra using symbolic python.]

Версия 23:13, 3 января 2025

2024

2024-12

2024-05


2024-03

2024-01

2023

2023-11

2023-10

2023-09

2023-08

2023-06

2023-03

2022

2022-04

  • 2022-04-27, 22:04:58: Nick Titterton
    X = cvx.Variable((V, V), PSD=True)

2022-03

2021

2021-12

2021-11

2021-10

2021-09

2021-08

2021-07

2021-06

2021-05

  • 2021-05-30, 11:24:30: Facebook
    Аллен Дауни прямо радует - читается хорошо, без академической воды и понятно, с адекватными и ясными примерами практических задач. Последний раз все было так ясно и лаконично при перерешивании задач по терверу из советского учебника Вентцель и книги по байесовским методам Джона Крушке. Покрутил, наверное, в 10 раз в голове теорему Байеса и, вообще, понятие вероятности, условной вероятности, совместной вероятности, априорного и апостериорного распределения, сопряженного приора, pdf, pmf, cdf с разных сторон (и в очередной раз так и не просек простую идею бета-распределения, но, верю, она же есть) - ну чтобы чуйка развилась еще больше. Я честно, от всего сердца и ума, делал несколько подходов к прикладной байесовской статистике с разных сторон и с разными инструментами, прочитал, наверно несколько книг (поняв в них далеко не все) и не помню уже как много статей, но постоянно преследовал вопрос - а зачем и как это мне поможет в повседневной практике? Основная цель, которую я преследовал и до сих пор преследую для себя - научиться понимать "небольшие" данные и причины, стоящие за ними глубже, чем позволяют популярные статистические методы и мало кем, на самом деле, глубоко понимаемые доверительные интервалы на хи-квадратах, погоняемых группами сТЬЮдентов

2021-04

2021-03

2021-02

2021-01

2020

2020-12

2020-11

2020-10

2020-09

2020-08

2020-07