2011-gre-cs-practice-book.pdf/Q32 — различия между версиями
(→Ответы) |
(→Объяснение) |
||
Строка 45: | Строка 45: | ||
*# В модели сравнения можно доказать, что худший случай с временем <m>\(o(n \log n)\)</m> невозможен. | *# В модели сравнения можно доказать, что худший случай с временем <m>\(o(n \log n)\)</m> невозможен. | ||
− | Следовательно, правильный ответ это тот, где для задачи ближайших соседей время составляет <m>\( \Theta(n \log n)\)</m>, а для задачи самых дальних соседей — <m>\( \Theta(n)\)</m> | + | Следовательно, правильный ответ это тот, где для задачи ближайших соседей время составляет <m>\( \Theta(n \log n)\)</m>, а для задачи самых дальних соседей — <m>\( \Theta(n)\)</m>. |
− | + | ||
− | + | ||
{{question-ok|}} | {{question-ok|}} | ||
{{checkme|[[Участник:Nikitashapovalov|Nikitashapovalov]] 22:38, 8 января 2025 (UTC)}} | {{checkme|[[Участник:Nikitashapovalov|Nikitashapovalov]] 22:38, 8 января 2025 (UTC)}} |
Версия 00:45, 9 января 2025
Вопрос: Q32-08c765
Ближайшие соседи: Дан неотсортированный массив из чисел с плавающей точкой. Необходимо найти два из них, которые ближе всего друг к другу по значению.
Самые дальние соседи: Дан неотсортированный массив из чисел с плавающей точкой. Необходимо найти два из них, которые дальше всего друг от друга по значению.
Предположим, что разрешены только следующие операции с данными:
- Сравнение значений двух элементов массива с целью определения большего из них;
- Сравнение расстояния между двумя элементами массива (абсолютное значение разности между значениями двух элементов) с расстоянием между двумя другими элементами массива;
- Перестановка двух элементов массива.
Также предполагается, что каждая разрешённая операция стоит единичную стоимость. Каковы наихудшие (в худшем случае) асимптотические временные сложности алгоритмов, решающих эти две задачи?
Ответы
Привльный ответ: (А)
Объяснение
Исходники — вопрос 32 на 30 странице книги «2011-gre-cs-practice-book.pdf»
Можно сделать следующие наблюдения:
- Самые дальние соседи
- Нужно найти только глобальный минимум и максимум массива.
- Поиск минимума и максимума может быть выполнен за время (с одним проходом по массиву).
- Таким образом, задача нахождения самых дальних соседей имеет оптимальное худшее время выполнения .
- Ближайшие соседи
- Классический подход состоит в том, чтобы сначала отсортировать массив (за время ), а затем выполнить один линейный проход по отсортированному массиву, чтобы найти минимальную разницу между соседними элементами (время ).
- Это дает общее время выполнения .
- В модели сравнения можно доказать, что худший случай с временем невозможен.
Следовательно, правильный ответ это тот, где для задачи ближайших соседей время составляет , а для задачи самых дальних соседей — . Решено: Nikitashapovalov 22:38, 8 января 2025 (UTC)