Участник:StasFomin/Bookmarks/Algorithms

Материал из DISCOPAL
< Участник:StasFomin‎ | Bookmarks
Версия от 07:38, 16 января 2024; StasFomin (обсуждение | вклад) (Добавлена закладка FurkanGozukara/Stable-Diffusion: Stable Diffusion, SDXL, LoRA Training, DreamBooth Training, Automatic1111 Web UI, DeepFake, Deep Fakes, TTS, Animation, Text To Video, Tutorials, Guides, Lectures, Courses, ComfyUI, Google Colab, RunPod, NoteBooks, ControlNet, TTS, Voice Cloning, AI, AI News, ML, ML News, News, Tech, Tech News, Kohya LoRA, Kandinsky 2, DeepFloyd IF, Midjourney)

Перейти к: навигация, поиск

2024

2024-01

2023

2023-11

2023-10

2023-09

2023-08

2023-06

2023-03

2022

2022-04

  • 2022-04-27, 22:04:58: Nick Titterton
    X = cvx.Variable((V, V), PSD=True)

2022-03

2021

2021-12

2021-11

2021-10

2021-09

2021-08

2021-07

2021-06

2021-05

  • 2021-05-30, 11:24:30: Facebook
    Аллен Дауни прямо радует - читается хорошо, без академической воды и понятно, с адекватными и ясными примерами практических задач. Последний раз все было так ясно и лаконично при перерешивании задач по терверу из советского учебника Вентцель и книги по байесовским методам Джона Крушке. Покрутил, наверное, в 10 раз в голове теорему Байеса и, вообще, понятие вероятности, условной вероятности, совместной вероятности, априорного и апостериорного распределения, сопряженного приора, pdf, pmf, cdf с разных сторон (и в очередной раз так и не просек простую идею бета-распределения, но, верю, она же есть) - ну чтобы чуйка развилась еще больше. Я честно, от всего сердца и ума, делал несколько подходов к прикладной байесовской статистике с разных сторон и с разными инструментами, прочитал, наверно несколько книг (поняв в них далеко не все) и не помню уже как много статей, но постоянно преследовал вопрос - а зачем и как это мне поможет в повседневной практике? Основная цель, которую я преследовал и до сих пор преследую для себя - научиться понимать "небольшие" данные и причины, стоящие за ними глубже, чем позволяют популярные статистические методы и мало кем, на самом деле, глубоко понимаемые доверительные интервалы на хи-квадратах, погоняемых группами сТЬЮдентов

2021-04

2021-03

2021-02

2021-01

2020

2020-12

2020-11

2020-10

2020-09

2020-08

2020-07