Optprob/Задача Штейнера о минимальном дереве
Материал из DISCOPAL
Версия от 08:17, 18 ноября 2022; StasFomin (обсуждение | вклад) (Новая страница: «<!-- p --> {{checked|}} [https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%A8%D1%82%D0%B5%D0%B9%D0%BD%D0%B5%D1%80%D0%B0_%D0%BE_%D0%BC%D0%B8%…»)
Задача Штейнера о минимальном дереве.
Т.е. у нас есть неориентированный граф, где
- N=74 узлов, узлы графа двух типов:
- Терминальные
- Они должны быть частью сети.
- Штейнера
- Не обязательно, чтобы они были частью сети.
|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 |
Терминальный? | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
- M=153 неориентированных ребер в весом-стоимостью, которых мы представим 306 двойными дугами, ребро (i, j, w) → в ребро i→j (w) и ребро j→i (w)
сотни дуг с весами
1 | 18 | 2 |
2 | 20 | 2 |
3 | 1 | 1 |
3 | 23 | 3 |
3 | 74 | 8 |
4 | 13 | 3 |
5 | 3 | 2 |
5 | 4 | 6 |
5 | 16 | 6 |
5 | 20 | 3 |
5 | 47 | 6 |
5 | 50 | 7 |
5 | 59 | 10 |
5 | 68 | 5 |
6 | 32 | 1 |
6 | 59 | 3 |
7 | 23 | 9 |
8 | 1 | 1 |
8 | 33 | 5 |
8 | 44 | 5 |
9 | 16 | 7 |
9 | 37 | 8 |
10 | 12 | 8 |
13 | 26 | 9 |
13 | 30 | 4 |
14 | 52 | 2 |
14 | 54 | 2 |
14 | 62 | 4 |
15 | 24 | 8 |
15 | 41 | 1 |
16 | 15 | 9 |
16 | 19 | 6 |
17 | 44 | 6 |
17 | 1 | 2 |
18 | 24 | 2 |
18 | 63 | 6 |
18 | 69 | 3 |
19 | 6 | 6 |
19 | 38 | 8 |
19 | 72 | 8 |
20 | 7 | 7 |
21 | 42 | 3 |
22 | 11 | 4 |
22 | 28 | 5 |
22 | 43 | 6 |
22 | 51 | 3 |
23 | 39 | 5 |
24 | 57 | 4 |
25 | 36 | 1 |
25 | 66 | 5 |
26 | 16 | 10 |
26 | 53 | 3 |
27 | 48 | 3 |
29 | 31 | 3 |
31 | 48 | 9 |
31 | 72 | 2 |
32 | 28 | 2 |
32 | 25 | 2 |
33 | 13 | 9 |
33 | 17 | 7 |
34 | 11 | 3 |
35 | 34 | 10 |
35 | 42 | 1 |
36 | 7 | 2 |
36 | 68 | 8 |
37 | 68 | 1 |
37 | 73 | 10 |
39 | 9 | 1 |
39 | 28 | 8 |
39 | 45 | 8 |
39 | 54 | 3 |
39 | 65 | 6 |
39 | 71 | 2 |
40 | 12 | 5 |
40 | 27 | 2 |
40 | 52 | 3 |
40 | 20 | 8 |
41 | 30 | 6 |
41 | 52 | 2 |
42 | 14 | 5 |
42 | 30 | 10 |
42 | 62 | 3 |
42 | 72 | 7 |
43 | 10 | 5 |
11 | 42 | 7 |
44 | 7 | 5 |
44 | 59 | 6 |
45 | 40 | 1 |
46 | 5 | 9 |
46 | 25 | 6 |
46 | 15 | 7 |
46 | 39 | 9 |
48 | 24 | 6 |
49 | 38 | 1 |
49 | 47 | 6 |
49 | 53 | 7 |
49 | 56 | 4 |
50 | 67 | 6 |
50 | 71 | 6 |
51 | 38 | 1 |
51 | 42 | 9 |
51 | 63 | 10 |
51 | 70 | 8 |
52 | 47 | 5 |
52 | 66 | 8 |
52 | 70 | 1 |
53 | 9 | 8 |
53 | 25 | 9 |
54 | 36 | 2 |
55 | 9 | 7 |
55 | 17 | 1 |
55 | 49 | 3 |
55 | 61 | 7 |
56 | 2 | 6 |
56 | 59 | 3 |
56 | 65 | 1 |
57 | 63 | 5 |
58 | 70 | 7 |
60 | 15 | 2 |
60 | 17 | 1 |
60 | 25 | 1 |
60 | 29 | 1 |
61 | 8 | 8 |
61 | 58 | 6 |
62 | 7 | 7 |
62 | 48 | 2 |
62 | 58 | 2 |
62 | 64 | 1 |
64 | 55 | 3 |
65 | 11 | 5 |
66 | 39 | 10 |
67 | 55 | 1 |
67 | 72 | 4 |
68 | 6 | 10 |
68 | 19 | 5 |
68 | 21 | 3 |
68 | 22 | 10 |
68 | 56 | 6 |
68 | 64 | 7 |
69 | 21 | 2 |
69 | 35 | 5 |
70 | 4 | 7 |
70 | 23 | 5 |
70 | 10 | 10 |
70 | 34 | 17 |
71 | 1 | 9 |
72 | 2 | 7 |
72 | 43 | 6 |
73 | 8 | 6 |
73 | 26 | 6 |
74 | 10 | 5 |
74 | 37 | 3 |
74 | 71 | 4 |
18 | 1 | 2 |
20 | 2 | 2 |
1 | 3 | 1 |
23 | 3 | 3 |
74 | 3 | 8 |
13 | 4 | 3 |
3 | 5 | 2 |
4 | 5 | 6 |
16 | 5 | 6 |
20 | 5 | 3 |
47 | 5 | 6 |
50 | 5 | 7 |
59 | 5 | 10 |
68 | 5 | 5 |
32 | 6 | 1 |
59 | 6 | 3 |
23 | 7 | 9 |
1 | 8 | 1 |
33 | 8 | 5 |
44 | 8 | 5 |
16 | 9 | 7 |
37 | 9 | 8 |
12 | 10 | 8 |
26 | 13 | 9 |
30 | 13 | 4 |
52 | 14 | 2 |
54 | 14 | 2 |
62 | 14 | 4 |
24 | 15 | 8 |
41 | 15 | 1 |
15 | 16 | 9 |
19 | 16 | 6 |
44 | 17 | 6 |
1 | 17 | 2 |
24 | 18 | 2 |
63 | 18 | 6 |
69 | 18 | 3 |
6 | 19 | 6 |
38 | 19 | 8 |
72 | 19 | 8 |
7 | 20 | 7 |
42 | 21 | 3 |
11 | 22 | 4 |
28 | 22 | 5 |
43 | 22 | 6 |
51 | 22 | 3 |
39 | 23 | 5 |
57 | 24 | 4 |
36 | 25 | 1 |
66 | 25 | 5 |
16 | 26 | 10 |
53 | 26 | 3 |
48 | 27 | 3 |
31 | 29 | 3 |
48 | 31 | 9 |
72 | 31 | 2 |
28 | 32 | 2 |
25 | 32 | 2 |
13 | 33 | 9 |
17 | 33 | 7 |
11 | 34 | 3 |
34 | 35 | 10 |
42 | 35 | 1 |
7 | 36 | 2 |
68 | 36 | 8 |
68 | 37 | 1 |
73 | 37 | 10 |
9 | 39 | 1 |
28 | 39 | 8 |
45 | 39 | 8 |
54 | 39 | 3 |
65 | 39 | 6 |
71 | 39 | 2 |
12 | 40 | 5 |
27 | 40 | 2 |
52 | 40 | 3 |
20 | 40 | 8 |
30 | 41 | 6 |
52 | 41 | 2 |
14 | 42 | 5 |
30 | 42 | 10 |
62 | 42 | 3 |
72 | 42 | 7 |
10 | 43 | 5 |
42 | 11 | 7 |
7 | 44 | 5 |
59 | 44 | 6 |
40 | 45 | 1 |
5 | 46 | 9 |
25 | 46 | 6 |
15 | 46 | 7 |
39 | 46 | 9 |
24 | 48 | 6 |
38 | 49 | 1 |
47 | 49 | 6 |
53 | 49 | 7 |
56 | 49 | 4 |
67 | 50 | 6 |
71 | 50 | 6 |
38 | 51 | 1 |
42 | 51 | 9 |
63 | 51 | 10 |
70 | 51 | 8 |
47 | 52 | 5 |
66 | 52 | 8 |
70 | 52 | 1 |
9 | 53 | 8 |
25 | 53 | 9 |
36 | 54 | 2 |
9 | 55 | 7 |
17 | 55 | 1 |
49 | 55 | 3 |
61 | 55 | 7 |
2 | 56 | 6 |
59 | 56 | 3 |
65 | 56 | 1 |
63 | 57 | 5 |
70 | 58 | 7 |
15 | 60 | 2 |
17 | 60 | 1 |
25 | 60 | 1 |
29 | 60 | 1 |
8 | 61 | 8 |
58 | 61 | 6 |
7 | 62 | 7 |
48 | 62 | 2 |
58 | 62 | 2 |
64 | 62 | 1 |
55 | 64 | 3 |
11 | 65 | 5 |
39 | 66 | 10 |
55 | 67 | 1 |
72 | 67 | 4 |
6 | 68 | 10 |
19 | 68 | 5 |
21 | 68 | 3 |
22 | 68 | 10 |
56 | 68 | 6 |
64 | 68 | 7 |
21 | 69 | 2 |
35 | 69 | 5 |
4 | 70 | 7 |
23 | 70 | 5 |
10 | 70 | 10 |
34 | 70 | 17 |
1 | 71 | 9 |
2 | 72 | 7 |
43 | 72 | 6 |
8 | 73 | 6 |
26 | 73 | 6 |
10 | 74 | 5 |
37 | 74 | 3 |
71 | 74 | 4 |
Надо найти подграф минимальной стоимости, соединающий все терминальные узлы.
[ Хронологический вид ]Комментарии
Войдите, чтобы комментировать.