2001-gre-vs-practice.pdf/Q15

Материал из DISCOPAL
< 2001-gre-vs-practice.pdf
Версия от 19:02, 23 декабря 2024; StasFomin (обсуждение | вклад)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Вопрос: Q15-e5724f

Число называется общим делителем числе и , тогда и только тогда, когда с делитель числа и делитель числа . Какой из следующих наборов целых чисел может быть набором ВСЕХ общих делителей двух целых чисел?

Ответы

  • {-6, -2, -1, 1, 2, 6}
  • {-6, -2, -1, 0, 1, 2, 6}
  • Правильный ответ: {-6, -3, -2, -1, 1, 2, 3, 6}
  • {-6, -3, -2, -1, 0, 1, 2, 3, 6}
  • {-6, -4, -3, -2, -1, 1, 2, 3, 4, 6}

Объяснение

Исходники — вопрос 15 на 19 странице книги «2001-gre-vs-practice.pdf»

Варианты «{-6, -2, -1, 0, 1, 2, 6}» и «{-6, -3, -2, -1, 0, 1, 2, 3, 6}» не подходят, так как 0 не является делителем любого целого числа.

Вариант «{-6, -2, -1, 1, 2, 6}» не подходит, так как если 6 делитель числа и , то 3 также является делителем, но его нет в предложенном наборе.

Вариант «{-6, -4, -3, -2, -1, 1, 2, 3, 4, 6}» не подходит, так как если числа делятся на 4 и на 3, то они также должны делиться и на 12, но такого числа нет в наборе.

Правильный ответ: «{-6, -3, -2, -1, 1, 2, 3, 6}». Например, данный набор является набором всех общих делителей для чисел 12 и 6.

[ Хронологический вид ]Комментарии

(нет элементов)

Войдите, чтобы комментировать.