Вероятность/Задачи/coin-game-n-k/Решение Торчинской — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
(Массовая правка: замена :Проблемы в решении]] на :Уже не исправить]])
 
(не показана 1 промежуточная версия 1 участника)
Строка 15: Строка 15:
 
[[Участник:StasFomin|StasFomin]] 19:08, 16 декабря 2013 (MSK): Откуда вообще здесь может взяться n<sup>n</sup>?  
 
[[Участник:StasFomin|StasFomin]] 19:08, 16 декабря 2013 (MSK): Откуда вообще здесь может взяться n<sup>n</sup>?  
 
----
 
----
 +
[[Участник:ELinkA|ELinkA]] 13:00, 17 декабря 2013 (MSK):
 +
Посчитаем сначала, сколькими способами проигравший мог выиграть ровно k раундов. <br />
 +
Известно, выигравший выиграл n раундов, и игра закончилась. Значит, последний ход точно был сделан выигравшим. Оставшиеся n-1 его побед и k побед другого игрока могут быть размещены произвольно среди k+n-1 раундов. Значит, их C<sup>k</sup><sub>k+n-1</sub>=(k+n-1)!/(k!*(n-1)!). Обозначим эту величину как M<sub>k</sub>.<br/>
 +
Теперь заметим, что проигравший, вообще говоря, мог выиграть от 0 до n-1 раунда. Значит, общее количество возможных исходов равно сумме M<sub>i</sub> при i от 0 до n-1, а искомая вероятность равна отношению M<sub>k</sub> к этой сумме.
  
 
+
[[Category:Уже не исправить]]
[[Category:Проблемы в решении]]
+

Текущая версия на 20:50, 20 мая 2020

Посчитаем сначала, сколькими способами проигравший мог выиграть ровно k раундов.

Известно, выигравший выиграл n раундов, и игра закончилась.

Значит, считая каждый из k выигрышей проигравшего перегородкой, получаем n мест, куда их можно поставить (по одному перед каждым выигрышем победившего)

Значит, всего есть nk распределения k выигрышей проигравшего.

Теперь заметим, что проигравший, вообще говоря, мог выиграть от 0 до n-1 раунда.

Суммируем по количеству выигрышей проигравшего, получаем nn-1/n-1 исход. Значит, итоговая вероятность равна nk(n-1)/(nn-1).


StasFomin 19:08, 16 декабря 2013 (MSK): Откуда вообще здесь может взяться nn?


ELinkA 13:00, 17 декабря 2013 (MSK): Посчитаем сначала, сколькими способами проигравший мог выиграть ровно k раундов.
Известно, выигравший выиграл n раундов, и игра закончилась. Значит, последний ход точно был сделан выигравшим. Оставшиеся n-1 его побед и k побед другого игрока могут быть размещены произвольно среди k+n-1 раундов. Значит, их Ckk+n-1=(k+n-1)!/(k!*(n-1)!). Обозначим эту величину как Mk.
Теперь заметим, что проигравший, вообще говоря, мог выиграть от 0 до n-1 раунда. Значит, общее количество возможных исходов равно сумме Mi при i от 0 до n-1, а искомая вероятность равна отношению Mk к этой сумме.