Еженедельный по «сложности алгоритмов» для 3 курса ИСПРАН — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Еженедельный по «сложности алгоритмов» для 3 курса ИСПРАН

Вариант 3634542620.


Ваше имя*:


Вопрос 1

Паросочетание, это подмножество...


  1.  связных подграфов
  2.  вершин
  3.  ребер
  4.  циклов

Вопрос 2

Паросочетание, покрывающее все вершины графа, называется

  1.  максимальным
  2.  покрывающим
  3.  совершенным
  4.  сочетающим
  5.  вершинным

Вопрос 3

Какой алгоритм используется в алгоритме Кристофидеса?

  1.  Поиск кратчайших путей
  2.  Рюкзак-оптимальность
  3.  Поиск совершенного паросочетания
  4.  Алгоритм Флойда-Уоршелла
  5.  Поиск минимального разреза

Вопрос 4

Задача Коммивояжера, в которой для матрицы расстояний выполнено неравенство треугольника, называется:

  1.  Евклидовой
  2.  Треугольной
  3.  Метрической
  4.  Гамильтоновой
  5.  Эйлеровой

Вопрос 5

Гамильтонов цикл в графе:

  1.  проходит через все ребра по одному разу
  2.  проходит через все вершины и ребра по одному разу
  3.  проходит через все вершины по одному разу

Вопрос 6

Какова точность, гарантируемая гибридным вероятностным алгоритмом из темы про вероятностное округление MAX-SAT?


  1.  
  2.  
  3.  
  4.  
  5.  

Вопрос 7

Какие из подходов к решению вычислительно трудных задач изучались в курсе?

  1.  Применение теории генетических алгоритмов
  2.  Построение эффективных метаэвристик
  3.  Построение эффективных вероятностных приближенных алгоритмов с оценками точности в худшем случае

Вопрос 8

Для чего применяется «метод условных вероятностей»:

  1.  Дератизация
  2.  Дерандомизация
  3.  Рандомизация
  4.  Шервудские алгоритмы
  5.  Метод Лас-Вегас
  6.  Демократизация
  7.  Метод Монте-Карло

Вопрос 9

Какова сложность вероятностного алгоритма Фрейвалда для проверки тождества AB=C для матриц  ?

  1.  
  2.  
  3.  
  4.  

Вопрос 10

Для чего применяется «дерандомизация»:

  1.  Построение детерминированных приближенных алгоритмов
  2.  Построение вероятностных алгоритмов, полиномиальных в среднем
  3.  Для оценки сложности в среднем
  4.  Построение вероятностного алгоритма с меняющимися "плохими входами"
  5.  Для оценки снизу возможной точности для данной задачи
  6.  Построение вероятностных алгоритмов, полиномиальных "для почти всех исходных данных"