MAX-CUT: вероятностное округление/Задачи/merge-vertices — различия между версиями

Материал из DISCOPAL
Перейти к: навигация, поиск
Строка 47: Строка 47:
  
 
В конце, «восстанавливаем разрез» — каждая его часть соответствует вершинам, содержащимся в одной из метавершин.
 
В конце, «восстанавливаем разрез» — каждая его часть соответствует вершинам, содержащимся в одной из метавершин.
 +
 +
<neato>
 +
graph G{
 +
1--2
 +
2--3
 +
3--4
 +
4--1
 +
3--1
 +
4--2
 +
 +
edge [color=blue]
 +
2--5
 +
3--5
 +
}
 +
</neato>
 +
 
----
 
----
  
  
 
Доказать, что вероятностный алгоритм вычисляет минимальный разрез с вероятностью <m>P \ge \frac{2}{n(n-1)}</m>
 
Доказать, что вероятностный алгоритм вычисляет минимальный разрез с вероятностью <m>P \ge \frac{2}{n(n-1)}</m>

Версия 11:13, 19 декабря 2013

Минимальный разрез в графе (стягивание вершин)

Рассмотрим рандомизированный алгоритм Каргера-Штейна для неориентированных графов с кратными ребрами. Пусть дан мультиграф c вершинами и ребрами.

Алгоритм основан на операции стягивания ребра между двумя вершинами. После стягивания ребра получим новый граф без вершины в котором каждое ребро вида заменено ребром (петли также удаляются). Алгоритм следующий

for i=0 to n-2:
   выбрать случайное ребро e
   стянуть ребро e

[svg] [svg] [svg] [svg]

В конце, «восстанавливаем разрез» — каждая его часть соответствует вершинам, содержащимся в одной из метавершин.

[svg]



Доказать, что вероятностный алгоритм вычисляет минимальный разрез с вероятностью