2001-gre-math.pdf/Q28

Материал из DISCOPAL
Перейти к: навигация, поиск

Вопрос: Q28-19def7

Если и это 6-мерные подпространства линейного 10-мерного пространства , то какова минимальная возможная размерность пространства ?

Ответы

  • 0
  • 1
  • Правильный ответ: 2
  • 4
  • 6

Объяснение

Исходники — вопрос 28 на 28 странице книги «2001-gre-math.pdf»

Воспользуемся формулой Грассмана: dim() = dim() + dim() - dim().

В нашем случае: dim() = 6 и dim() = 2

Оценим dim().

Очевидно, dim() = 10, т.к. 2 линейных подпространства не могут при сложении дать пространство, выходящее за рамки исходного.

При это оценка достижима, выберем в качестве = (, ... ), а в качестве = (, ... ), где - i-тый базисный вектор пространства V.

Тогда получим, что dim() . Причем оценка достижима.

Задача зарезервирована: KoshelevEA 05:59, 8 января 2025 (UTC)

Check-me-animated.gif Решено: KoshelevEA 05:59, 8 января 2025 (UTC)

[ Хронологический вид ]Комментарии

(нет элементов)

Войдите, чтобы комментировать.