Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 342437778.


Ваше имя*:


Вопрос 1

Рассмотрим следующее AVL-дерево: [svg]

Если в данное дерево требуется вставить элемент со значением 12, сколько поворотов необходимо сделать для балансировки дерева?

  1.  3
  2.  0
  3.  2
  4.  1

Вопрос 2

Сколько раз происходит обращение ко всем вершинам в графе G(V, E) в процессе работы алгоритма поиска в глубину?

  1.  1
  2.  4
  3.  2
  4.  3

Вопрос 3

Какие из следующих алгоритмов используют подход Разделяй и Властвуй?

  1.  Все выше перечисленные
  2.  Бинарный поиск и умножение Штрассена
  3.  Быстрая сортировка
  4.  Сортировка слиянием

Вопрос 4

Алгоритм Беллмана-Форда решает задачу кратчайшего пути из вершины в случае, когда веса ребер могут быть отрицательными, какова временная сложность выполнения алгоритма Беллмана-Форда?

  1.  
  2.  
  3.  
  4.  

Вопрос 5

Какова временная сложность выполнения алгоритма Беллмана-Форда на K-регулярном графе ()?

  1.  
  2.  
  3.  
  4.  

Вопрос 6

Сколько вершин имеет дерево с 57 ребрами?

  1.  56
  2.  57
  3.  58
  4.  2**6 — 4

Вопрос 7

Рассмотрим следующий код:

y = y + z
for i in range(1, n + 1):
    k = k + 2;
for i in range(1, n + 1):
    for j in range(1, n + 1):
        x = x + 1;

Какая сложность по времени для данного кода является правильной?

  1.  
  2.  
  3.  
  4.  

Вопрос 8

Рассмотрим следующие утверждения об алгоритме обхода графа в глубину:

  • I. Предположим, мы запускаем DFS на неориентированном графе и находим ровно 15 обратных ребер. Тогда граф гарантированно будет иметь по крайней мере один цикл.
  • II. DFS на ориентированном графе с n вершинами и, по крайней мере, n ребрами гарантированно найдет хотя бы одно обратное ребро.

Какие из данных утверждений верны?

  1.  Только I
  2.  Оба
  3.  Только II
  4.  Ни одно

Вопрос 9

Рассмотрим следующие выражения:

  • I. Диграф — это граф, имеющий ровно 2 вершины.
  • II. Остовное дерево в графе всегда должно содержать как минимум ребер.
  • III. Алгоритм сортировки ребер для решения задачи коммивояжера всегда дает оптимальный результат.

Какие утверждения верные, а какие нет?

  1.  I, II
  2.  Только II
  3.  I, III
  4.  II, III

Вопрос 10

Рассмотрим следующие утверждения (h(k) — хэш-функция):

  • I. если даже .
  • II. для любых .
  • III. для любых .
  1.  Только I, II
  2.  Только I
  3.  Только II, III
  4.  I, II, III