Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 2538507697.


Ваше имя*:


Вопрос 1

Рассмотрим следующие выражения:

  • I. Диграф — это граф, имеющий ровно 2 вершины.
  • II. Остовное дерево в графе всегда должно содержать как минимум ребер.
  • III. Алгоритм сортировки ребер для решения задачи коммивояжера всегда дает оптимальный результат.

Какие утверждения верные, а какие нет?

  1.  II, III
  2.  Только II
  3.  I, III
  4.  I, II

Вопрос 2

Что из перечисленного не может быть временной сложностью алгоритма быстрой сортировки ни в одном из средних, наилучших или наихудших случаев?

  1.  
  2.  
  3.  
  4.  

Вопрос 3

Сколько раз происходит обращение ко всем вершинам в графе G(V, E) в процессе работы алгоритма поиска в глубину?

  1.  1
  2.  4
  3.  2
  4.  3

Вопрос 4

Пусть и что из ниже перечисленного является верным?

  1.  
  2.  
  3.  
  4.  

Вопрос 5

Пусть имеется два отсортированных списка размера K и L соответственно. Сколько потребуется сравнений элементов, для того чтобы получить отсортированный список размера K + L, состоящий из элементов этих списков?

  1.  
  2.  
  3.  
  4.  

Вопрос 6

Рассмотрим следующие утверждения об алгоритме обхода графа в глубину:

  • I. Предположим, мы запускаем DFS на неориентированном графе и находим ровно 15 обратных ребер. Тогда граф гарантированно будет иметь по крайней мере один цикл.
  • II. DFS на ориентированном графе с n вершинами и, по крайней мере, n ребрами гарантированно найдет хотя бы одно обратное ребро.

Какие из данных утверждений верны?

  1.  Только II
  2.  Оба
  3.  Только I
  4.  Ни одно

Вопрос 7

Сколько остовных деревьев имеет данный граф (все ребра имеют одинаковый вес)?

[svg]

  1.  5
  2.  2
  3.  3
  4.  4

Вопрос 8

Рассмотрим следующие выражения:

  • I. Подсчет медианы из n элементов занимает времени для любого алгоритма, основанного на сравнении элементов.
  • II. Пусть T является минимальным остовным деревом для графа G. Тогда для любой пары вершин a и b кратчайший путь между ними в G является кратчайшим путем между ними в T.

Какие утверждения верные, а какие нет?

  1.  I-False, II-False
  2.  I-False, II-TRUE
  3.  I-TRUE, II-False
  4.  I-TRUE, II-TRUE

Вопрос 9

Сколько вершин имеет дерево с 57 ребрами?

  1.  2**6 — 4
  2.  56
  3.  57
  4.  58

Вопрос 10

Для какой из изображенных ниже куч на минимум будут получены элементы массива в порядке возрастания, если для кучи применяется обход preorder traversal?

  1.  [svg]
  2.  [svg]
  3.  [svg]
  4.  [svg]