Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 3259023039.


Прошло 00:00:02.
Ваше имя*:


Вопрос 1

Хэш функция с линейным зондированием используется для вставки ключей 37, 38, 72, 68, 98, 11, 74 в хэш-таблицу с индексом (0-6). Какой индекс соответствует ключу 74?

  1.  4
  2.  2
  3.  1
  4.  3

Вопрос 2

Пусть M является целым числом, которое больше единицы. Какая асимптотика роста функции является верной?

  1.  
  2.  
  3.  
  4.  

Вопрос 3

Алгоритм Беллмана-Форда решает задачу кратчайшего пути из вершины в случае, когда веса ребер могут быть отрицательными, какова временная сложность выполнения алгоритма Беллмана-Форда?

  1.  
  2.  
  3.  
  4.  

Вопрос 4

Рассмотрим следующие утверждения (h(k) — хэш-функция):

  • I. если даже .
  • II. для любых .
  • III. для любых .
  1.  Только I, II
  2.  Только I
  3.  I, II, III
  4.  Только II, III

Вопрос 5

Рассмотрим следующее рекуррентное соотношение: Какое из следующих утверждений является верным?

  1.  Данное соотношение подходит для случая 3 Master теоремы
  2.  Данное соотношение подходит для случая 2 Master теоремы
  3.  Данное соотношение подходит для случая 1 Master теоремы
  4.  Master теорема не может быть применена, поскольку не является константой

Вопрос 6

Каково число подстрок любой длины, за исключением пустой строки, может быть получено из заданной строки длиной n?

  1.  
  2.  
  3.  
  4.  

Вопрос 7

Запустим алгоритм Дейкстры, начиная с вершины S, чтобы найти кратчайший путь T, и рассмотрим следующие утверждения:

  • I. Алгоритм Дейкстры возвращает кратчайший путь с минимальным общим весом.
  • II. Алгоритм Дейкстры возвращает кратчайший путь с минимальным количеством ребер.

Какие из данных утверждений верны?

  1.  Только I
  2.  Оба
  3.  Ни одно
  4.  Только II

Вопрос 8

Рассмотрим массив из n элементов. Какую временную сложность имеет алгоритм поиска максимальной суммы трех элементов в массиве?

  1.  
  2.  
  3.  
  4.  

Вопрос 9

Рассмотрим следующие выражения:

  • I. Диграф — это граф, имеющий ровно 2 вершины.
  • II. Остовное дерево в графе всегда должно содержать как минимум ребер.
  • III. Алгоритм сортировки ребер для решения задачи коммивояжера всегда дает оптимальный результат.

Какие утверждения верные, а какие нет?

  1.  II, III
  2.  Только II
  3.  I, III
  4.  I, II

Вопрос 10

Пусть имеется два отсортированных списка размера K и L соответственно. Сколько потребуется сравнений элементов, для того чтобы получить отсортированный список размера K + L, состоящий из элементов этих списков?

  1.  
  2.  
  3.  
  4.