Вариант 3510994437.
Рассмотрим массив из n элементов. Какую временную сложность имеет алгоритм поиска максимальной суммы трех элементов в массиве?
Сколько раз происходит обращение ко всем вершинам в графе G(V, E) в процессе работы алгоритма поиска в глубину?
Предположим, что G — это связный неориентированный граф, ребра которого имеют положительные веса. Пусть M — минимальное остовное дерево этого графа. Мы модифицируем граф, добавляя «6» к весу каждого ребра, какое из следующих утверждений верно?
Что из перечисленного не может быть временной сложностью алгоритма быстрой сортировки ни в одном из средних, наилучших или наихудших случаев?
Запустим алгоритм Дейкстры, начиная с вершины S, чтобы найти кратчайший путь T, и рассмотрим следующие утверждения:
Какие из данных утверждений верны?
Пусть дана последовательность n случайных чисел. Какая будет временная сложность для вычисления медианы данного массива?
Какая временная сложность выполнения данного кода?
for (i = n; i > 0; i/= 2){ for (int j = 1; j < n; j * = 2){ for (int k = 0; k < n; k + = 2){ sum + = (i + j * k); } } }
Какова временная сложность выполнения алгоритма Беллмана-Форда на K-регулярном графе ()?
Какие из следующих алгоритмов используют подход Разделяй и Властвуй?
Сколько остовных деревьев имеет данный граф (все ребра имеют одинаковый вес)?
[svg]