Вариант 146514434.
Рассмотрим следующий код:
y = y + z for i in range(1, n + 1): k = k + 2; for i in range(1, n + 1): for j in range(1, n + 1): x = x + 1;
Какая сложность по времени для данного кода является правильной?
Пусть структура данных поддерживает операцию `foo`, таким образом, что последовательность из n операций `foo` занимает времени в худшем случае. Каково амортизационное время операции `foo`?
Пусть имеется два отсортированных списка размера K и L соответственно. Сколько потребуется сравнений элементов, для того чтобы получить отсортированный список размера K + L, состоящий из элементов этих списков?
Чтобы выполнить поиск элемента в dynamic set, какой из следующих методов является асимптотически наиболее эффективным по времени в наихудшем случае для операции поиска?
Рассмотрим следующие выражения:
Какие утверждения верные, а какие нет?
Какая временная сложность выполнения данного кода?
for (i = n; i > 0; i/= 2){ for (int j = 1; j < n; j * = 2){ for (int k = 0; k < n; k + = 2){ sum + = (i + j * k); } } }
Пусть и что из ниже перечисленного является верным?
Рассмотрим следующие утверждения:
Для какого алгоритма сортировки все утверждения являются верными?
Что из перечисленного не может быть временной сложностью алгоритма быстрой сортировки ни в одном из средних, наилучших или наихудших случаев?
Рассмотрим следующее AVL-дерево: [svg]
Если в данное дерево требуется вставить элемент со значением 12, сколько поворотов необходимо сделать для балансировки дерева?