Гамильтонов путь. Решение/Гилязев Руслан
Материал из DISCOPAL
Версия от 13:15, 24 мая 2015; Ruslan1 (обсуждение | вклад) (Новая страница: « Выберем произвольное ребро. Получим путь длины 1. Покажем как можно увеличить путь на 1. П…»)
Выберем произвольное ребро. Получим путь длины 1. Покажем как можно увеличить путь на 1. Пусть у нас имеется путь T длины k < n. Пусть последняя вершина пути "b", а первая - "a". Возьмем любую вершину "c" не входящую в T. Если есть ребро (b -> c) или ребро (c -> a), то мы сможем увеличить путь. Если нет, то есть ребра (с -> b) и (a -> c). Тогда переберем все вершины из T. Очевидно, что найдется пара соседних вершин пути "u" и "v" (u - > v) такие, что есть ребра (u -> c) и (с -> v), тогда заменим (u -> v) этими ребрами. Итак, мы увеличили путь. Таким образом построим гамильтонов путь. Алгоритм работает за O(n^2).
[ Хронологический вид ]Комментарии
Войдите, чтобы комментировать.