Участник:StasFomin/Innopolis/Wtf
Материал из DISCOPAL
https://eduwiki.innopolis.university/index.php/BSc:_EfficientAlgorithms
Содержание
Эффективные алгоритмы для труднорешаемых задач
- Квалификация выпускника: бакалавр
- Направление подготовки: Направление 01.04.02 «Прикладная математика и информатика».
- Направленность (профиль) образовательной программы: «Системное программирование и компьютерные науки». Образовательная программа «Вычислительная математика».
- Программу разработал(а): Фомин С.А.
1. Краткая характеристика дисциплины
Изучение дисциплины обеспечивает формирование и развитие компетенций обучающихся в области программного обеспечения и его разработки; искусственного интеллекта и его применения для решения различных прикладных задач в рамках профессиональной деятельности. В ходе освоения дисциплины обучающиеся рассматривают:
- Теорию сложности, для определения
- классов задач допускающих эффективное решение детерминированными и вероятностными алгоритмами — классы P, RP, ZPP, BPP и т.п.
- классов задач, для которых считается невозможным существование эффективных алгоритмов точного решения — NP-complete, PSPACE-complete.
- классов задач, для которых считается невозможным существование эффективных алгоритмов поиска приближенного решения — APX-complete.
- Классические алгоритмы решения задач на графах и множествах (кратчайшие пути, покрытия, сортировки)
- Алгоритмы, подходы и эвристики, для решения NP-полных задач:
- приближенные алгоритмы с гарантированной точностью, включая алгоритмы с любой, заранее выбранной точностью — PTAS, FPTAS.
- вероятностные алгоритмы, и эвристики их порождения — методы Монте-Карло, вероятностного округления и т.п.
- методы дерандомизации — получения детерминированных приближенных алгоритмов из вероятностных.
2. Перечень планируемых результатов обучения
В ходе курса студенты научатся:
- Оценивать вычислительную сложность алгоритмических задач (в терминах вычислительных ресурсов).
- Классифицировать алгоритмические задачи их в основных сложностных классах — базовое ориентирование в огромном «зоопарке» классов сложности — студенты познакомятся с известными теоремами и открытыми гипотезами о соотношении сложностей задач.
- Устанавливать связи между сложностными классами.
- Выделять сложнорешаемые и практически решаемые алгоритмические задачи.
- Для трудноразрешимых задач, строить приближенные и вероятностные алгоритмы и дерандомизировать некоторые из них — познакомиться с несколькими красивыми и широко используемыми в узких кругах полиномиальными алгоритмами.
- Практически решать на Python классические задачи (возможность в дальнейшем использовать полученные навыки в дальнейшей работе по окончании ВУЗа), применение классических эвристик — «жадность», «динамическое программирование», известных алгоритмов на сортировки и графы и т.п.
- Использовать достижения программной индустрии — ЦЛП-солверы, SAT-солверы, Pyomo-формулировки для постановки и решения задач оптимизации.
Дисциплина участвует в формировании следующих компетенций образовательной программы:
- «СПК-9» — способность осуществлять математическую постановку задачи и решать ее современными оптимизационными методами для оптимального выбора средств защиты информации при ограничениях на их стоимость, габариты, энергопотребление и др.
- «СПК-1» — способность осуществлять поиск, изучение, обобщение и систематизацию научно-технической информации, нормативных и методических материалов в сфере профессиональной деятельности, в том числе на иностранном языке.
- «СПК-7»— способность разрабатывать научно-техническую документацию, готовить научно-технические отчеты, обзоры, публикации по результатам выполненных работ.
Общая характеристика результата обучения по дисциплине
- Знания
-
- теоретических моделей вычисления.
- классов сложности оптимизационных задач.
- методов полиномиальной сводимости классических NP-полных задач.
- методов анализа сложности детерминированных и вероятностных алгоритмов, анализа точности в среднем и «для почти всех исходных данных».
- Умения
-
- постановки оптимизационной формулировки для оптимизационной задачи
- использование ЦЛП и SAT-солверов
- доказательство труднорешаемости оптимизационной задачи
- оценка сложности алгоритма, «в худшем» и «в среднем»
- оценка качества приближения алгоритма, «в худшем» и «в среднем»
- Навыки (владения)
-
- программирование на Python
- работа с Jupyter-ноутбуками
- работа с IDE VSCode/code-server
- использование фреймворка Pyomo, для постановки оптимизационных задач и решения их ЦЛП-солверами
- Использование фреймворка pySAT для решения SAT-задач
3. Структура и содержание дисциплины
№ п/п |
Наименование раздела дисциплины |
Содержание дисциплины по темам |
1. | Введение в высокопроизводительные вычисления, OpenMP и OpenCL | - Существующие суперкомпьютерные системы - Модель общей памяти - Подходы к программированию MIMD и SIMD - Массивно-параллельные ускорители - Иерархия памяти |
2. | Параллельные алгоритмы линейной алгебры | - Матричное умножение: оптимизация производительности различных реализаций на основе различных типов памяти устройства - Прямые методы решения СЛАУ: исключение Гаусса, разложение Холецкого, метод прогонки, параллельная реализация - Итерационные методы решения СЛАУ: метод Якоби, метод Зейделя, релаксационные методы, параллельная реализация |
3. | Параллельные методы решения дифференциальных уравнений | - Решение систем обыкновенных дифференциальных уравнений - Решение волнового уравнения - Решение задачи теплопроводности - Решение задачи Дирихле для уравнения Пуассона |
4. | Физически информированные нейронные сети | - Основы нейронных сетей - Основы методов оптимизации - Принципы преобразования задач, записанных в терминах дифференциальных уравнений, в оптимизационные - Повышение эффективности процедуры обучения |
5. | Параллельные методы Монте-Карло | - Вычисление определенных интегралов - Способы уменьшения дисперсии - Генераторы псевдослучайных чисел - Подходы к распараллеливанию методов Монте-Карло |
6. | Высокопроизводительные вычисления и современные языки программирования | - Многопоточность в современных языках программирования - Существующие обертки для OpenCL и CUDA - Другие высокоуровневые подходы к параллельному программированию |
4. Методические и оценочные материалы
Задания для практических занятий:
См. примеры:
- «Практикуемся в алгоритмах»
- «Моделирование труднорешаемых задач»
- «Моделирование бизнес-задач»
- «Решаем теоретические упражнения»
Контроль успеваемости обучающихся по дисциплине:
См. примеры тестов:
Перечень учебно-методического обеспечения дисциплины
- Основная книга
- «Эффективные алгоритмы и сложность вычислений»
- Дополнительные материалы
- https://discopal.ispras.ru/Дополнительные_материалы_по_сложности_вычислений
- https://discopal.ispras.ru/Дополнительные_материалы_по_приближенным_алгоритмам
- Необходимое программное обеспечение для студентов
- броузер.
Методические указания для обучающихся по освоению дисциплины
Вид учебных занятий/деятельности |
Деятельность обучающегося |
Лекция | Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения лекции, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Обозначить вопросы, термины или другой материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. |
Практические (лабораторные) занятия | Практические занятия предназначены прежде всего для разбора отдельных сложных положений, тренировки аналитических навыков, а также для развития коммуникационных навыков. Поэтому на практических занятиях необходимо участвовать в тех формах обсуждения материала, которые предлагает преподаватель: отвечать на вопросы преподавателя, дополнять ответы других студентов, приводить примеры, задавать вопросы другим выступающим, обсуждать вопросы и выполнять задания в группах. Работа на практических занятиях подразумевает домашнюю подготовку и активную умственную работу на самом занятии. Работа на практических занятиях в форме устного опроса заключается прежде всего в тренировке навыков применять теоретические положения к самому разнообразному материалу. В ходе практических занятий студенты работают в группах для обсуждения предлагаемых вопросов. |
Самостоятельная работа | Самостоятельная работа состоит из следующих частей: 1) чтение учебной, справочной, научной литературы; 2) повторение материала лекций; 3) составление планов устных выступлений; 4) подготовка презентаций. При чтении учебной литературы нужно разграничивать для себя материал на отдельные проблемы, концепции, идеи. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
Доклад | Публичное, развернутое сообщение по определенной теме или вопросу, основанное на документальных данных. При подготовке доклада рекомендуется использовать разнообразные источники, позволяющие глубже разобраться в теме. Учебную литературу можно найти в электронных библиотечных системах, на которые подписан АНО Университет Иннополис. |
Дискуссия | Публичное обсуждение спорного вопроса, проблемы. Каждая сторона должна оппонировать мнение собеседника, аргументируя свою позицию. |
Разработка отдельных частей кода | Разработать часть кода, исходя из поставленной задачи и рекомендаций преподавателя. При выполнении работы рекомендуется обращаться к материалам лекций и семинарских (практических) занятий. Если возникают затруднения, необходимо проконсультироваться с преподавателем. |
Выполнение домашних заданий и групповых проектов | Для выполнения домашних заданий и групповых проектов необходимо получить формулировку задания от преподавателя и убедиться в понимании задания. При выполнение домашних заданий и групповых проектов необходимо проработать материалы лекций, основной и дополнительной литературы по заданной теме. |
Индивидуальная работа | При выполнение индивидуальной работы необходимо взять задание у преподавателя, ознакомиться с требованиями к выполнению работы, изучить поставленную проблему, найти решение проблемы. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, во время семинарского (практического) занятия. Оформить результаты работы. |
Тестирование (устное/письменное) | При подготовке к тестированию необходимо проработать материалы лекций, семинаров, основной и дополнительной литературы по заданной теме. Основная цель тестирования – показать уровень сформированности знаний по конкретной теме или ее части. |
Методы и технологии обучения, способствующие формированию компетенции
Методы и технологии обучения, способствующие формированию компетенции |
Информационно-коммуникационная технология, проектная технология, технология проблемного обучения, кейс-технология, традиционные технологии, модульные технологии |