Вариант 3080368103.
Возможно ли сконструировать алгоритм , который для произвольной машины Тюринга и входа определит, остановится ли данная М.Т. на заданном входе?
Существует ли алгоритм, который выписывает одну за другой все машины Тьюринга, которые останавливаются, будучи запущенными на пустой ленте?
Найдите неверное утверждение:
Какой класс ошибок допускают алгоритмы решающие задачи из класса ZPP?
Выберите корректное утверждение:
Замкнутость по какой из операций выполнена как для разрешимых, так и для перечислимых языков?
Пересечение двух каких классов окажется пустым, если окажется, что ?
Какое утверждение неверно?
Цикл, проходящий через все ребра графа по одному разу, называется
В работах по теории сложности алгоритм называется полиномиальным в среднем, если для входов длины n и времени работы алгоритма T, выполняется:
Формулировка (в виде ЦЛП) какой задачи приведена ниже:
Задачи 3SAT и 2SAT:
Рассмотрим модификацию задачи «Сумма размеров», разрешим даже отрицательные размеры.
Формально: Даны натуральные числа , , и число B.
Надо узнать, существует ли решение в 0/1 переменных уравнения .
Существует ли полиномиальный алгоритм для этой задачи?
Выберите не NP-полную задачу
Какой метод применялся в теме про подсчет выполняющих наборов для ДНФ?
Какова сложность вероятностного алгоритма Фрейвалда для проверки тождества AB=C для матриц ?
У языков L1-L4 доказаны следующие полиномиальные сводимости по Карпу: «L1→L2», «L3→L2→L4» Рассмотрим утверждения:
Метод многократного запуска вероятностного алгоритма, с целью уменьшения вероятности ошибки называется:
Выберите верное утверждение
Выберите верное верное утверждение из списка ниже, если верных вариантов ответа несколько, то выберите наиболее сильный из них:
Какова точность, гарантируемая жадным алгоритмом в задаче о k-покрытии?
Пусть
Что верно?
Существует ли биекция между классами и ?
Какой алгоритм используется в алгоритме Кристофидеса?
Предположим, разумеется, что Тогда что будет верно?
Задача 2SAT:
Паросочетание, это подмножество...
Для чего применяется «метод условных вероятностей»:
Аню и Колю попросили показать, что задача X — NP-полна. Аня показала полиномиальную сводимость по Карпу от 3SAT к X, а Коля показал полиномиальную сводимость по Карпу от X к 3SAT.
Что можно утверждать?
Какова точность, гарантируемая жадным алгоритмом в задаче о покрытии?
Выберите верное следствие:
Что верно для NP-полных и NP-трудных задач:
Существует ли алгоритм, который выписывает одну за другой все машины Тьюринга, которые не останавливаются, будучи запущенными на пустой ленте?
Какой класс ошибок допускают алгоритмы решающие задачи из класса BPP?
Для какой задачи в курсе использовался "метод условных вероятностей" с последовательным определением значения переменных:
Какой класс ошибок допускают алгоритмы решающие задачи из класса PP?
Для чего применяется «дерандомизация»:
Сложность алгоритма динамического программирования для задачи о рюкзаке, который «помнит» о наиболее «дорогих» допустимых решениях:
Является ли пустое множество разрешимым?
Какой алгоритм используется в рассмотренных FPTAS-алгоритмах для рюкзака?
Рассмотрим пару задач на графах.
Для заданного графа, подтвердить или опровергнуть, что в нем есть цикл, который проходит по каждому ребру точно один раз, без исключений.
Вероятностные «zero-error»-алгоритмы:
Пусть задача A — «есть ли цикл в ненаправленном графе». Рассмотрим набор утверждений.
Какие из подходов к решению вычислительно трудных задач изучались в курсе?
Будет ли класс -полных задач замкнутым относительно сводимости по Карпу, если окажется, что ?
С какой точностью работает модифицированный жадный алгоритм для задачи о рюкзаке из соответствующей темы?
Вероятностный алгоритм A, который, получая
за время, полиномиальное от , выдает в качестве выхода , такое, что
называется:
Какой из этих тестов на простоту не является рандомизированным:
Какова наилучшая сложность алгоритма из темы про FPTAS-алгоритмы для рюкзака?
Является ли конкатенация двух разрешимых языков перечислимой?
Сложность алгоритма динамического программирования для задачи о рюкзаке, который «помнит» о наиболее «легких» допустимых решениях:
Является ли разрешимым множество натуральных чисел, не превосходящих :
Рассмотрим две задачи разрешения, P1 и P2, такие что
Гамильтонов цикл в графе:
Предположим, открыли полиномиальный алгоритм, вычисляющий наибольшую клику в заданном графе. Что тогда будет, согласно вариантам на картинке?
Выберите общепринятое определение класса NPC (NP-полных задач).
тогда и только тогда, когда:
Паросочетание, покрывающее все вершины графа, называется
Какой алгоритм используется только в лучшем из рассмотренных в теме FPTAS-алгоритмов для рюкзака?