Вариант 2029059892.
Пусть k — целое число, большее 1. Какое из следующих значений соответствует порядку возрастания выражения в зависимости от n?
Рассмотрите совокупность всех неориентированных графов с 10 вершинами и 6 ребрами
Пусть M и m, соответственно, являются максимальным и минимальным количеством связанных компонентов в любом графе в коллекции
Если граф не имеет замкнутых циклов и между любой парой узлов имеется не более одного ребра, что из следующего верно?
Что из перечисленного не является свойством растровой графики (Bitmap graphics)?
Рассмотрите следующие два языка
Что из нижеследующего верно в отношении и ?
Массив A содержит 256 элементов по 4 байта каждый. Его первый элемент хранится по физическому адресу 4096
Массив B содержит 512 элементов по 4 байта каждый. Его первый элемент хранится по физическому адресу 8192
Предположим, что только массивы A и B могут быть кэшированы в изначально пустой, физически адресуемой, физически маркированной, кэш-памяти с прямым отображением, объемом 2 Кбайт и размером блока 8 байт
Затем выполняется следующий цикл
for (i = 0; i < 256; i++) A[i] = A[i] + B[2*i];
Сколько байт будет записано в память во время выполнения цикла, если в кэше предусмотрена политика обратной записи?
Из следующих задач, касающихся данного неориентированного графа G, о котором в настоящее время известно, что он разрешим за полиномиальное время?
Задача о кратчайшем пути для всех пар может быть определена следующим образом
Input
Направленный граф , где
Стоимость для всех , где тогда и только тогда, когда
Definition
длина кратчайшего пути от до для всех
Если нет пути от до , то
Если для всех
Problem
Определить для всех
Алгоритм Флойда-Уоршалла дает решение динамического программирования для определения массива для и по следующим условиям
длина кратчайшего пути от до , для которого все промежуточные узлы на этом пути находятся в (где никакие промежуточные узлы не допускаются, если
Тогда
Алгоритм вычисляет используя рекуррентность по , где начальный шаг задается следующим образом
для и
для всех
Каково время работы алгоритма Флойда-Уоршалла ?
Какое из следующих утверждений об удаленном вызове процедуры (RPC) верно?
Предположим, что P(x, y) означает «x является родителем y», а M(x) означает «x — мужчина»
Если F(v, w) равно , каково значение выражения F(v, w)?
Инвариантом для приведенного ниже цикла является и
x := b; k := n; z := 1; while (k != 0) { if odd(k) then z := z*x; x := x*x; k := [k/2]; }
Когда цикл завершается, что из перечисленного ниже должно быть истинным?