Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 1574408225.


Ваше имя*:


Вопрос 1

Запустим алгоритм Дейкстры, начиная с вершины S, чтобы найти кратчайший путь T, и рассмотрим следующие утверждения:

  • I. Алгоритм Дейкстры возвращает кратчайший путь с минимальным общим весом.
  • II. Алгоритм Дейкстры возвращает кратчайший путь с минимальным количеством ребер.

Какие из данных утверждений верны?

  1.  Только II
  2.  Оба
  3.  Ни одно
  4.  Только I —

Вопрос 2

Рассмотрим следующие утверждения об алгоритме обхода графа в глубину:

  • I. Предположим, мы запускаем DFS на неориентированном графе и находим ровно 15 обратных ребер. Тогда граф гарантированно будет иметь по крайней мере один цикл.
  • II. DFS на ориентированном графе с n вершинами и, по крайней мере, n ребрами гарантированно найдет хотя бы одно обратное ребро.

Какие из данных утверждений верны?

  1.  Ни одно
  2.  Только I —
  3.  Оба
  4.  Только II

Вопрос 3

Сколько раз происходит обращение ко всем вершинам в графе G(V, E) в процессе работы алгоритма поиска в глубину?

  1.  1
  2.  2
  3.  3
  4.  4

Вопрос 4

Для какой из изображенных ниже куч на минимум будут получены элементы массива в порядке возрастания, если для кучи применяется обход preorder traversal?

  1.  [svg]
  2.  [svg]
  3.  [svg]

  4.  [svg]

Вопрос 5

Рассмотрим следующие утверждения (h(k) — хэш-функция):

  • I. если даже .
  • II. для любых .
  • III. для любых .
  1.  I, II, III
  2.  Только I, II
  3.  Только II, III
  4.  Только I —

Вопрос 6

Алгоритм Беллмана-Форда решает задачу кратчайшего пути из вершины в случае, когда веса ребер могут быть отрицательными, какова временная сложность выполнения алгоритма Беллмана-Форда?

  1.  
  2.  
  3.  
  4.   —

Вопрос 7

Пусть имеется два отсортированных списка размера K и L соответственно. Сколько потребуется сравнений элементов, для того чтобы получить отсортированный список размера K + L, состоящий из элементов этих списков?

  1.  
  2.  
  3.  
  4.  

Вопрос 8

Какие из представленных ниже утверждений являются верными?

  • 1)
  • 2)
  • 3),  — константа
  • 4)
  1.  i, ii
  2.  ii, iii
  3.  i, ii, iii —
  4.  i, ii, iv

Вопрос 9

Рассмотрим следующие выражения:

  • I. Диграф — это граф, имеющий ровно 2 вершины.
  • II. Остовное дерево в графе всегда должно содержать как минимум ребер.
  • III. Алгоритм сортировки ребер для решения задачи коммивояжера всегда дает оптимальный результат.

Какие утверждения верные, а какие нет?

  1.  II, III
  2.  I, III
  3.  I, II
  4.  Только II —

Вопрос 10

Сколько остовных деревьев имеет данный граф (все ребра имеют одинаковый вес)?

[svg]

  1.  3 —
  2.  4
  3.  5
  4.  2