Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 1544003891.


Ваше имя*:


Вопрос 1

Сколько вершин имеет дерево с 57 ребрами?

  1.  57
  2.  2**6 — 4
  3.  56
  4.  58

Вопрос 2

Рассмотрим следующее рекуррентное соотношение: Какое из следующих утверждений является верным?

  1.  Данное соотношение подходит для случая 1 Master теоремы
  2.  Данное соотношение подходит для случая 3 Master теоремы
  3.  Master теорема не может быть применена, поскольку не является константой
  4.  Данное соотношение подходит для случая 2 Master теоремы

Вопрос 3

Алгоритм Беллмана-Форда решает задачу кратчайшего пути из вершины в случае, когда веса ребер могут быть отрицательными, какова временная сложность выполнения алгоритма Беллмана-Форда?

  1.  
  2.  
  3.  
  4.  

Вопрос 4

Какая временная сложность выполнения данного кода?

for (i = n; i > 0; i/= 2){
    for (int j = 1; j < n; j * = 2){
        for (int k = 0; k < n; k + = 2){
        sum + = (i + j * k);
        }
    }
}
  1.  
  2.  
  3.  
  4.  

Вопрос 5

Для какой из изображенных ниже куч на минимум будут получены элементы массива в порядке возрастания, если для кучи применяется обход preorder traversal?

  1.  [svg]
  2.  [svg]
  3.  [svg]
  4.  [svg]

Вопрос 6

Каково число подстрок любой длины, за исключением пустой строки, может быть получено из заданной строки длиной n?

  1.  
  2.  
  3.  
  4.  

Вопрос 7

Какое из представленных ниже регулярных выражений задает строки вида , где m, p, n больше либо равно 2.

  1.  
  2.  
  3.  
  4.  

Вопрос 8

Рассмотрим следующие выражения:

  • I. Диграф — это граф, имеющий ровно 2 вершины.
  • II. Остовное дерево в графе всегда должно содержать как минимум ребер.
  • III. Алгоритм сортировки ребер для решения задачи коммивояжера всегда дает оптимальный результат.

Какие утверждения верные, а какие нет?

  1.  Только II
  2.  I, II
  3.  I, III
  4.  II, III

Вопрос 9

Какой будет временная сложность печати всех ключей дерева бинарного поиска в отсортированном порядке?

  1.  
  2.  
  3.  
  4.  

Вопрос 10

Предположим, что G — это связный неориентированный граф, ребра которого имеют положительные веса. Пусть M — минимальное остовное дерево этого графа. Мы модифицируем граф, добавляя «6» к весу каждого ребра, какое из следующих утверждений верно?

  1.  Модификация добавляет к общему весу всех остовных деревьев.
  2.  Ничего из вышеперечисленного.
  3.  Порядок ребер, добавляемых к минимальному остовному дереву с использованием алгоритма Прима, изменится.
  4.  Порядок ребер, добавляемых к минимальному остовному дереву с использованием алгоритма Крускала, изменится.