Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 3819485795.


Ваше имя*:


Вопрос 1

Каково число подстрок любой длины, за исключением пустой строки, может быть получено из заданной строки длиной n?

  1.  
  2.  
  3.  
  4.  

Вопрос 2

Рассмотрим следующие утверждения:

  • Пусть n — это число элементов в массиве
  • В процессе сортировки массива происходит порядка уровней
  • На каждом уровне происходит порядка действий

Для какого алгоритма сортировки все утверждения являются верными?

  1.  Сортировка пузырьком
  2.  Сортировка кучей
  3.  Сортировка выбором
  4.  Сортировка слиянием

Вопрос 3

Алгоритм Беллмана-Форда решает задачу кратчайшего пути из вершины в случае, когда веса ребер могут быть отрицательными, какова временная сложность выполнения алгоритма Беллмана-Форда?

  1.  
  2.  
  3.  
  4.  

Вопрос 4

Какая временная сложность выполнения данного кода?

for (i = n; i > 0; i/= 2){
    for (int j = 1; j < n; j * = 2){
        for (int k = 0; k < n; k + = 2){
        sum + = (i + j * k);
        }
    }
}
  1.  
  2.  
  3.  
  4.  

Вопрос 5

Дан неориентированный граф G = (V, E) и положительное целое число K, имеет ли G K вершин, которые образуют полный подграф, и если да, то каково минимальное значение K?

  1.  2
  2.  Ничего и перечисленного
  3.  3
  4.  4

Вопрос 6

Хэш функция с линейным зондированием используется для вставки ключей 37, 38, 72, 68, 98, 11, 74 в хэш-таблицу с индексом (0-6). Какой индекс соответствует ключу 74?

  1.  3
  2.  4
  3.  2
  4.  1

Вопрос 7

Рассмотрим следующий код:

y = y + z
for i in range(1, n + 1):
    k = k + 2;
for i in range(1, n + 1):
    for j in range(1, n + 1):
        x = x + 1;

Какая сложность по времени для данного кода является правильной?

  1.  
  2.  
  3.  
  4.  

Вопрос 8

Какое из представленных ниже регулярных выражений задает строки вида , где m, p, n больше либо равно 2.

  1.  
  2.  
  3.  
  4.  

Вопрос 9

Рассмотрим следующие выражения:

  • I. Подсчет медианы из n элементов занимает времени для любого алгоритма, основанного на сравнении элементов.
  • II. Пусть T является минимальным остовным деревом для графа G. Тогда для любой пары вершин a и b кратчайший путь между ними в G является кратчайшим путем между ними в T.

Какие утверждения верные, а какие нет?

  1.  I-TRUE, II-TRUE
  2.  I-False, II-False
  3.  I-False, II-TRUE
  4.  I-TRUE, II-False

Вопрос 10

Сколько остовных деревьев имеет данный граф (все ребра имеют одинаковый вес)?

[svg]

  1.  4
  2.  5
  3.  3
  4.  2