Вариант 2883482647.
Предположим, что символы a,b,c,d,e встречаются с частотами . Какие получатся коды Хаффмана для букв a,b,c соответственно?
Какие из представленных ниже утверждений являются верными?
Рассмотрим следующий код:
y = y + z for i in range(1, n + 1): k = k + 2; for i in range(1, n + 1): for j in range(1, n + 1): x = x + 1;
Какая сложность по времени для данного кода является правильной?
Дан неориентированный граф G = (V, E) и положительное целое число K, имеет ли G K вершин, которые образуют полный подграф, и если да, то каково минимальное значение K?
Пусть имеется два отсортированных списка размера K и L соответственно. Сколько потребуется сравнений элементов, для того чтобы получить отсортированный список размера K + L, состоящий из элементов этих списков?
Рассмотрим следующие утверждения:
Для какого алгоритма сортировки все утверждения являются верными?
Пусть M является целым числом, которое больше единицы. Какая асимптотика роста функции является верной?
Какая временная сложность выполнения данного кода?
for (i = n; i > 0; i/= 2){ for (int j = 1; j < n; j * = 2){ for (int k = 0; k < n; k + = 2){ sum + = (i + j * k); } } }
Что из перечисленного не может быть временной сложностью алгоритма быстрой сортировки ни в одном из средних, наилучших или наихудших случаев?
Рассмотрим массив из n элементов. Какую временную сложность имеет алгоритм поиска максимальной суммы трех элементов в массиве?