Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 3434517996.


Ваше имя*:


Вопрос 1

Предположим, что символы a,b,c,d,e встречаются с частотами . Какие получатся коды Хаффмана для букв a,b,c соответственно?

  1.  1101, 1100, 111
  2.  1100, 1101, 111
  3.  1101, 111, 1101
  4.  1100, 10, 0

Вопрос 2

Какой будет временная сложность печати всех ключей дерева бинарного поиска в отсортированном порядке?

  1.  
  2.  
  3.  
  4.  

Вопрос 3

Рассмотрим следующие выражения:

  • I. Диграф — это граф, имеющий ровно 2 вершины.
  • II. Остовное дерево в графе всегда должно содержать как минимум ребер.
  • III. Алгоритм сортировки ребер для решения задачи коммивояжера всегда дает оптимальный результат.

Какие утверждения верные, а какие нет?

  1.  I, III
  2.  II, III
  3.  Только II
  4.  I, II

Вопрос 4

Рассмотрим следующее рекуррентное соотношение: Какое из следующих утверждений является верным?

  1.  Master теорема не может быть применена, поскольку не является константой
  2.  Данное соотношение подходит для случая 1 Master теоремы
  3.  Данное соотношение подходит для случая 3 Master теоремы
  4.  Данное соотношение подходит для случая 2 Master теоремы

Вопрос 5

Рассмотрим следующие выражения:

  • I. Подсчет медианы из n элементов занимает времени для любого алгоритма, основанного на сравнении элементов.
  • II. Пусть T является минимальным остовным деревом для графа G. Тогда для любой пары вершин a и b кратчайший путь между ними в G является кратчайшим путем между ними в T.

Какие утверждения верные, а какие нет?

  1.  I-TRUE, II-TRUE
  2.  I-False, II-False
  3.  I-TRUE, II-False
  4.  I-False, II-TRUE

Вопрос 6

Какие из представленных ниже утверждений являются верными?

  • 1)
  • 2)
  • 3),  — константа
  • 4)
  1.  i, ii, iii
  2.  i, ii, iv
  3.  ii, iii
  4.  i, ii

Вопрос 7

Алгоритм Беллмана-Форда решает задачу кратчайшего пути из вершины в случае, когда веса ребер могут быть отрицательными, какова временная сложность выполнения алгоритма Беллмана-Форда?

  1.  
  2.  
  3.  
  4.  

Вопрос 8

Что из перечисленного не может быть временной сложностью алгоритма быстрой сортировки ни в одном из средних, наилучших или наихудших случаев?

  1.  
  2.  
  3.  
  4.  

Вопрос 9

Пусть дана последовательность n случайных чисел. Какая будет временная сложность для вычисления медианы данного массива?

  1.  
  2.  
  3.  
  4.  

Вопрос 10

Рассмотрим массив из n элементов. Какую временную сложность имеет алгоритм поиска максимальной суммы трех элементов в массиве?

  1.  
  2.  
  3.  
  4.