Вариант 3043225911.
Рассмотрим программу на C++:
#include <stdio.h> int void main() { int j=0, k=0; f(j); cout << j + k; } void f (int& i) { k = i + 3; i = k * i; }
Напомним, что в C/C++, «int& i» — означает передачу целого параметра по ссылке.
Какое значение выведет программа?
Теоретически возможно реализовать любую комбинаторную логику используя только «NAND» или «NOR» узлы. Какие плюсы наличия более широкого класса логических вентилей при проектировании? Рассмотрим гипотезы:
Рассмотрим дерево: [svg]
Что нельзя о нем сказать?
Рассмотрим фрагмент программы на C:
int fibo (int n) { if (n<2) return n; else return fibo(n-1)+fibo(n-2); }
Чтобы найти время выполнения T(n) для «fibo», предположим, что для некоторых констант a и b
Следующим шагом, определим рекуррентное соотношение, которое, если решить, будет определять время работы T(n) через константы a и b. Выберите правильное.
Проведем BFS-поиск (поиск в ширину), кратчайшего пути из A в Z:
[svg]
В каком порядке алгоритм посетит вершины?
Что fibo вернет для n=7?
Рассмотрим граф перехода конечного автомата (конечного преобразователя), пусть самое правое состояние у него будет принимающим.
Что неверно?
Рассмотрим контекстно-свободную грамматику:
S → AB A → 1 | B1B B → 00A
Какую строку она может породить?
Какое число не может быть точно представлено в виде float?
Строгий анализ некоторого алгоритма, обнаружил, что как только размер входа превосходит некоторую константу M, время выполнения алгоритма, T(n), становится не больше, чем куб от длины входа умноженный на константу, что для всех входов длины n
Рассмотрим утверждения: